Left unary operators
| Operator | Operation | Priority | Example | Mathematical formula | 
| abs | absolute value | 6 | abs(x) | |x| | 
| sqr | square | 6 | sqr(x) | x2 | 
| sqrt | square
    root | 6 | sqrt(x) |  | 
| exp | exponential | 6 | exp(x) | ex | 
| ln | natural logarithm | 6 | ln(x) | logex | 
| log | common logarithm | 6 | log(x) | log10x | 
| sin | sine | 6 | sin(x) | sin x | 
| cos | cosine | 6 | cos(x) | cos x | 
| tan | tangent | 6 | tan(x) | tan x | 
| asin | inverse
    sine | 6 | asin(x) | sin-1x (
    = arcsin
    x) | 
| acos | inverse
    cosine | 6 | acos(x) | cos-1x (
    = arccos
      x) | 
| atan | inverse
    tangent | 6 | atan(x) | tan-1x (
    = arctan
      x) | 
| sinh | hyperbolic sine | 6 | sinh(x) | sinh x | 
| cosh | hyperbolic cosine | 6 | cosh(x) | cosh x | 
| tanh | hyperbolic tangent | 6 | tanh(x) | tanh x | 
| asinh | inverse hyperbolic
    sine | 6 | asinh(x) | sinh-1x (
    = arcsinh
      x) | 
| acosh | inverse hyperbolic
    cosine | 6 | acosh(x) | cosh-1x (
    = arccosh
      x) | 
| atanh | inverse hyperbolic
    tangent | 6 | atanh(x) | tanh-1x (
    = arctanh
      x) | 
| cosec | cosecant | 6 | cosec(x) | cosec x ( = 1/sin x) | 
| sec | secant | 6 | sec(x) | sec x ( = 1/cos x) | 
| cot | cotangent | 6 | cot(x) | cot x ( = 1/tan x) | 
| acosec | inverse
    cosecant | 6 | acosec(x) | cosec-1
    x ( = arccosec x = arcsin 1/x = sin-1 1/x) | 
| asec | inverse
    secant | 6 | asec(x) | sec-1
      x ( = arcsec x = arccos 1/x = cos-1 1/x) | 
| acot | inverse
    cotangent | 6 | acot(x) | cot-1
      x ( = arccot x = arctan 1/x = tan-1 1/x) | 
| cosech | hyperbolic cosecant | 6 | cosech(x) | cosech x (=1/sinh x) | 
| sech | hyperbolic secant | 6 | sech(x) | sech x (=1/cosh x) | 
| coth | hyperbolic cotangent | 6 | coth(x) | coth x (=1/tanh x) | 
| acosech | inverse hyperbolic
    cosecant | 6 | acosech(x) | cosech-1
      x ( = arccosech x = arcsinh 1/x = sinh-11/x) | 
| asech | inverse hyperbolic
    secant | 6 | asech(x) | sech-1
      x ( = arcsech x = arccosh 1/x = cosh-1 1/x) | 
| acoth | inverse hyperbolic
    cotangent | 6 | acoth(x) | coth-1
      x ( = arccoth x = arctanh 1/x = tanh-1 1/x) |