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Abstract

There are many equilibria in second-price sealed-bid auctions with a buy price. This

paper analyzes multiple equilibria and then characterizes the set of equilibrium revenues.

A risk-neutral seller who faces risk-neutral bidders can always obtain a positive equilibrium

revenue by introducing a buy price properly. Our result gives a seller a new reason to use

a buy price in Internet auctions.
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1 Introduction

Most research on buy price auctions explains the effects of a buy price from the viewpoint of

seller’s risk attitude or bidders’ risk attitudes. Budish and Takeyama (2001) consider second-

price sealed-bid auctions with a buy price and show that a risk-neutral seller can improve her

expected revenue by properly introducing a buy price when bidders are risk-averse. Hidvégi,

Wang and Whinston (2006) and Reynolds and Wooders (2009) examine English auctions with

a buy price. Though Budish and Takeyama (2001) use a two-bidder two-type framework, they

consider a more general framework, where there are n bidders whose types are continuously

distributed, and prove that seller’s risk-aversion and bidders’ risk-aversion play key roles in

improving a seller’s expected revenue.
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Workshop on Market Design Technologies for Sustainable Development, and Kyoto Institute of Economic
Research. Of course, all remaining errors are my own. A previous version of this paper circulated under the
title, “All equilibrium revenues in buy price auctions.”
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A Buy-It-Now price option has a similar feature to that of a buy price option.1 In Buy-It-

Now price auctions, seller’s risk aversion or bidders’ risk aversion also accounts for the effects

on a seller’s expected revenue. Mathews and Katzman (2006) consider second-price sealed-bid

auctions with a Buy-It-Now price and show that a risk-averse seller who faces risk-neutral

bidders can improve her expected revenue by introducing a Buy-It-Now price. Reynolds and

Wooders (2009) analyze English auctions with a Buy-It-Now price and give similar results to

those of buy price auctions.

When both a seller and bidders are risk-neutral, however, a seller cannot increase her

expected revenue by introducing a buy price or a Buy-It-Now price and obtains at most the

same expected revenue as those of second-price sealed-bid auctions or English auctions. In

this sense, it is no substantial benefit for a seller to use a buy price or a Buy-It-Now price

when she conducts second-price sealed-bid auctions or English auctions.2

We consider second-price sealed-bid auctions with a buy price. There are two bidders

whose types are uniformly distributed. In a private value environment, we reveal an advantage

of a buy price when both a seller and bidders are risk-neutral. For this purpose, we attempt to

examine the effects of a buy price from another perspective. Inami (2011) highlights that there

is an asymmetric equilibrium in addition to a symmetric equilibrium in second-price sealed-

bid auctions with a buy price. We focus on multiple equilibria in the analysis. To examine

an equilibrium as much as possible, for example, we consider an equilibrium composed of a

strategy such that a bidder whose all types belong to one interval bid the same bid.

Milgrom (1981) points out that there are many equilibria in second-price sealed-bid auc-

tions without a buy price.3 We pay attention to this fact and contrast between the cases

of second-price sealed-bid auctions with and without a buy price. In second-price sealed-bid

auctions without a buy price, we show that the set of equilibrium revenues is a closed inter-

val.4 To obtain this result, we construct an equilibrium whose expected revenue corresponds

to each element in that interval. A truth-telling strategy equilibrium supports the maximum

of equilibrium revenues. And the minimum of equilibrium revenues is zero.5

Similarly, we characterize the set of equilibrium revenues for each buy price auction. In

the same way as second-price sealed-bid auctions without a buy price, we show that each

set of equilibrium revenues is also a closed interval. A symmetric equilibrium supports the

maximum of equilibrium revenues for each buy price auction. We show that a seller can

1In a buy price auction, bidders can submit a buy price throughout the auction. On the other hand, in a
Buy-It-Now price auction, bidders can submit a Buy-It-Now price only before the auction starts.

2When risk-neutral bidders need to pay a participation cost and sequentially arrive at an auction, there is
a case in which a risk-neutral seller can increase her expected revenue by introducing a Buy-It-Now price. See
Che (2011).

3Milgrom (1981) considers the case in which there are two bidders whose types are continuously distributed.
Maskin and Riley (1985) show that there are many equilibria even in a two-bidder two-type framework.

4In the case of more than two bidders, the set of equilibrium revenues is also a closed interval. See Inami
(2018) for details.

5It is well-known that there exists an equilibrium in which a seller’s expected revenue is zero in second-price
sealed-bid auctions without a buy price.
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always obtain a positive equilibrium revenue by introducing a buy price properly.

According to our knowledge, a limited number of studies explain the effects of a buy price

or a Buy-It-Now price without considering a seller’s risk attitude and bidders’ risk attitudes.

Mathews (2004) brings a possibility that a seller or bidders discount a future revenue or future

payoffs into the analysis. Mathews (2004) examines second-price sealed-bid auctions with

a Buy-It-Now price and shows that an impatient seller can increase her expected revenue

by introducing a Buy-It-Now price. Shunda (2009) also considers second-price sealed-bid

auctions with a Buy-It-Now price. Shunda (2009) examines the case in which bidders have

reference-dependent preferences and shows that a seller chooses a Buy-It-Now price that a

bidder exercises with positive probability.

There is a bit of research focusing on multiple equilibria.6 Blume and Heidhues (2004)

consider second-price sealed-bid auctions where there are at least three bidders. They char-

acterize the set of all equilibria and show that a seller can make an equilibrium unique by

properly introducing a reserve price. Plum (1992) characterizes all equilibria in two-bidder

auctions with several payment rules, in which the winner pays a convex combination of the

highest bid and the second-highest bid. Plum (1992) shows that any equilibrium is com-

posed of continuously differentiable and strictly monotone increasing strategies in all but

second-price sealed-bid auctions.

The rest of this paper is organized as follows. Section 2 describes the model. In Section

3, we derive the set of equilibrium revenues for each second-price sealed-bid auction with a

buy price. Section 4 reveals the effects of a buy price on equilibrium revenues. And Section

5 concludes.

2 Preliminaries

2.1 The model

A risk-neutral seller puts one item up for auction. Two risk-neutral bidders participate in the

auction. Each bidder’s type is independently drawn from a uniform distribution. The bidders

evaluate the item, depending only on their type.

The rule of second-price sealed-bid auctions with a buy price requires an explanation. A

seller sets a buy price before an auction starts. Bidders observe the buy price and then submit

a bid. If no one bids the buy price, then the highest bidder wins the auction and pays the

second-highest bid to the seller. If only one bidder bids the buy price, then he certainly wins

the auction but must pay it to the seller. If bidders bid the same amount (it may be the buy

6In a common value environment, Bikhchandani and Riley (1991) consider not only a symmetric equilibrium
but also asymmetric equilibria. They compare the seller’s expected revenues in second-price sealed-bid auctions
with those of English auctions. Lizzeri and Persico (2000) examine various kinds of auction formats except for
second-price sealed-bid auctions in an interdependent value environment. They derive necessary assumptions
to obtain a uniqueness result.
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price), the winner, who is determined with an equal probability, pays the other bidder’s bid

to the seller.

We formalize second-price sealed-bid auctions with a buy price as follows. A seller sets a

buy price B ∈ [0,+∞). Let N = {1, 2} be the set of bidders. For each bidder i, let Ti = [0, ω]

be the set of types. For each bidder i, let Ai = [0, b]∪{B} be the set of actions.7 The bid b is

the highest possible bid except the buy price B. In Internet auctions, bidders are not allowed

to bid above a buy price B. Then, it is assumed that the bid b is less than the buy price B.8

For each bidder i, a payoff function is ui : A× Ti → R, where A = Ai ×Aj (j ̸= i). For each

bidder i, a payoff is determined by

ui(a; ti) =


ti − aj if ai ̸= B and ai > aj

ti −B if ai = B and ai > aj
ti−aj

2 if ai = aj and

0 if ai < aj ,

given ti ∈ Ti and a ∈ A.

For each bidder i, a strategy is σi : Ti → Ai. We consider pure and non-decreasing

strategies. We adopt Bayesian Nash equilibrium as a solution concept. The strategy profile

σ = (σi(·), σj(·)) is a Bayesian Nash equilibrium if for all bidder i, all ti ∈ Ti, and all a′i ∈ Ai,

E[ui(a; ti)|σi(·), σj(·), f(·)] ≥ E[ui(a
′
i, aj ; ti)|σj(·), f(·)],

where f(·) is a common prior belief about the other bidder’s type.

There are many kinds of equilibria in second-price sealed-bid auctions without a buy price

B.9 We then restrict attention to a truth-telling strategy equilibrium and equilibria with

properties: there exists one interval of types such that one bidder submits the infimum of

the interval for all types in that interval and the other bidder submits the supremum of the

interval for all types in that interval; both bidders submit their own types for the rest of

types.10 In the analysis, for example, we take account of the following equilibrium. Fix

0 ≤ t < t ≤ ω arbitrarily. Then, consider the equilibrium σ′ = (σ′
i(·), σ′

j(·)) such that

σ′
i(ti) =


ti if 0 ≤ ti ≤ t

t if t < ti < t

ti if t ≤ ti ≤ ω

7Of course, we can adopt other set of actions, for example [0, B]. In this case, however, we face non-existence
of an equilibrium under some buy price B.

8Moreover, we consider the case in which the bid b is arbitrarily close to the buy price B.
9Blume and Heidhues (2001) characterize the set of equilibria in the case of two bidders. However, we could

not find their article at: http://www.wiwi.uni-bonn.de/heidhues/Paper/characterization2.PDF, accessed on
May 27, 2021.

10Blume and Heidhues (2004) point out the existence of such equilibria in the case of two bidders.
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and

σ′
j(tj) =


tj if 0 ≤ tj ≤ t

t if t < tj < t

tj if t ≤ tj ≤ ω.

In the equilibrium σ′, there exists the interval (t, t) of types, which satisfies the above-

mentioned properties.

2.2 The set of equilibrium revenues in second-price auctions without a buy

price B

Our main purpose is to give a seller a new reason to use a buy price B in Internet auctions.

For this purpose, we need to reveal what kinds of advantages a buy price B has. We con-

trast between the cases of second-price sealed-bid auctions with and without a buy price B.

Specifically speaking, we derive the set of equilibrium revenues for each case and then make

a detailed comparison.

At first we consider second-price sealed-bid auctions without a buy price B. We then have

the following proposition.

Proposition 1. Consider second-price sealed-bid auctions without a buy price B. Then, the

set of equilibrium revenues is [0, ω3 ].

Proof. See Appendix.

To obtain the set of equilibrium revenues, we have constructed an equilibrium in practice.

The set of equilibrium revenues is a closed interval. The minimum equilibrium revenue is zero.

And the maximum equilibrium revenue is supported by a truth-telling strategy equilibrium.

As a seller cannot know which equilibrium emerges, she risks the possibility that an

equilibrium revenue is zero in second-price sealed-bid auctions without a buy price B.

3 The set of equilibrium revenues in second-price auctions

with a buy price B

In this section, we consider second-price sealed-bid auctions with a buy price B. Especially,

we focus on second-price sealed-bid auctions with a buy price B ∈ (0, ω]. (In Appendix, we

analyze the rest of buy price auctions—a second-price sealed-bid auction with the buy price

B = 0 and second-price sealed-bid auctions with a buy price B ∈ (ω,+∞), respectively.) We

pick up one strategy profile and then derive the set of equilibrium revenues by modifying it.11

11For a second-price sealed-bid auction with the buy price B = 0, the set of equilibrium revenues is {0}. For
second-price sealed-bid auctions with a buy price B ∈ (ω,+∞), the sets of equilibrium revenues are equivalent
to those of second-price sealed-bid auctions without a buy price B. See Appendix for details.
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Once a seller sets a buy price B, a bidder whose type is greater than the buy price B

cannot submit his own type. In second-price sealed-bid auctions with a buy price B, thus,

we pay attention to strategy profiles such that: a bidder whose type is not less than the buy

price B submits the bid b or the buy price B; a bidder whose type is less than the buy price

B submits a bid in a similar way to those of second-price sealed-bid auctions without a buy

price B.12

One of the most basic strategy profiles that would be expected to be an equilibrium is a

strategy profile that both bidders’ all types which are not less than the buy price B submit

it. Surprisingly, the strategy profile is not an equilibrium.

Proposition 2. Consider second-price sealed-bid auctions with a buy price B ∈ (0, ω]. Then,

any strategy profile such that both bidders’ all types which are not less than the buy price B

submit it is not a Bayesian Nash equilibrium.

Proof. See Appendix.

To derive the set of equilibrium revenues, by Proposition 2, we need to find other strategy

profile, where bidders’ types which are not less than the buy price B do not always submit it.

3.1 The case of second-price auctions with a buy price B ∈ (0, ω
2
]

When we derive the set of equilibrium revenues in second-price sealed-bid auctions with a

buy price B ∈ (0, ω], we mainly look at two strategy profiles. For the analysis, we divide

second-price sealed-bid auctions with a buy price B ∈ (0, ω] into two cases. One is second-

price sealed-bid auctions with a buy price B ∈ (0, ω2 ]. The other is second-price sealed-bid

auctions with a buy price B ∈ (ω2 , ω].

First we consider second-price sealed-bid auctions with a buy priceB ∈ (0, ω2 ]. Fix b ∈ [0, b]

arbitrarily. Then, consider the strategy profile σ♯ = (σ♯
i (·), σ

♯
j(·)) such that

σ♯
i (ti) =


0 if 0 ≤ ti < b

ti if b ≤ ti ≤ b

b if B ≤ ti ≤ t♯i
B if t♯i < ti ≤ ω

12Specifically speaking, both bidders submit their types for all types or there exists one interval of types
such that one bidder submits the infimum of the interval for all types in the interval and the other bidder
submits the supremum of the interval for all types in the interval; both bidders submit their types for the rest
of types.

6



and

σ♯
j(tj) =


b if 0 ≤ tj < b

tj if b ≤ tj ≤ b

b if B ≤ tj ≤ t♯j
B if t♯j < tj ≤ ω.

Here let t♯i :=
ωB−b2

ω−B and t♯j := ωB+b2

ω−B , respectively. Once we fix the type b ∈ [0, b], then the

corresponding strategy profile σ♯ is uniquely determined. When bidders play the strategies

σ♯
i (·) and σ♯

j(·), bidders’ types which are not less than the buy price B but not greater than

the thresholds do not submit the buy price B.

The strategy profile σ♯ is an equilibrium, which is shown in Appendix. And the seller

obtains the equilibrium revenue, which is given by

1

6ω2

{
−2b3 + 3(t♯i − t♯j)b

2 + 2B3 − 3(t♯i + t♯j)B
2 + 6ω2B

}
.

Here let E[R♯(b)] := 1
6ω2 {−2b3+3(t♯i−t♯j)b

2+2B3−3(t♯i+t♯j)B
2+6ω2B}. The equilibrium

revenue E[R♯(·)] is a function of the type b on the domain [0, b]. In a similar way to those of

second-price sealed-bid auctions without a buy price B, we have the following proposition.

Proposition 3. Consider second-price sealed-bid auctions with a buy price B ∈
(
0, ω2

]
. Then,

the set of equilibrium revenues is[
E[R♯(b)], E[R♯(0)]

]
if B ∈

(
0, (

√
2− 1)ω

]
and[

E[R♯(b̂)], E[R♯(0)]
]

if B ∈
(
(
√
2− 1)ω, ω2

]
.

Here let b̂ :=
√
ω2 − 2ωB.

Proof. See Appendix.

The set of equilibrium revenues is a closed interval. In second-price sealed-bid auctions with

a buy price B ∈
(
0, (

√
2− 1)ω

]
, both t♯i ∈ [B,ω] and t♯j ∈ [B,ω] are well-defined. In second-

price sealed-bid auctions with a buy price B ∈
(
(
√
2 − 1)ω, ω2

]
, however, there is a case in

which t♯j ∈ [B,ω] is not well-defined. Thus, we need to modify the domain of the equilibrium

revenue E[R♯(·)].

3.2 The case of second-price auctions with a buy price B ∈ (ω
2
, ω]

Now, we consider second-price sealed-bid auctions with a buy price B ∈ (ω2 , ω]. In these

auctions, the strategy profile σ♯ is not an equilibrium. Instead, we pay attention to other

strategy profile. Fix b ∈ [0, b] arbitrarily. Then, consider the strategy profile σ♮ = (σ♮
i (·), σ

♮
j(·))
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such that

σ♮
i (ti) =


0 if 0 ≤ ti < b

ti if b ≤ ti ≤ b

b if B ≤ ti ≤ ω

and

σ♮
j(tj) =


b if 0 ≤ tj < b

tj if b ≤ tj ≤ b

b if B ≤ tj ≤ ω.

Once we fix the type b ∈ [0, b], then the corresponding strategy profile σ♮ is uniquely deter-

mined. When bidders play the strategies σ♮
i (·) and σ♮

j(·), bidders’ types which are not less

than the buy price B do not submit it at all.

The strategy profile σ♮ is an equilibrium. And the seller obtains the equilibrium revenue,

which is given by
1

3ω2

(
−b3 +B3 − 3ωB2 + 3ω2B

)
.

Here let E[R♮(b)] := 1
3ω2 (−b3+B3−3ωB2+3ω2B). As well as the case of the equilibrium

σ♯, the equilibrium revenue E[R♮(·)] is a function of the type b on the domain [0, b]. We then

have the following proposition.

Proposition 4. Consider second-price sealed-bid auctions with a buy price B ∈
(
ω
2 , ω

]
.

Then, the set of equilibrium revenues is
[
E[R♮(b̃)], E[R♮(0)]

]
if B ∈ (ω2 , ω]. Here let b̃ :=√

−ω2 + 2ωB.

Proof. See Appendix.

The set of equilibrium revenues is a closed interval. In second-price sealed-bid auctions with

a buy price B ∈ (ω2 , ω], we need to restrict the domain of the equilibrium revenue E[R♮(·)],
which guarantees the existence of an equilibrium.

4 The effects of a buy price B on equilibrium revenues

We have derived for each buy price auction the corresponding set of equilibrium revenues. In

this section, we show that introducing a buy price gives a seller a distinct advantage. For this

purpose, we focus on the minimum of equilibrium revenues.

At first, we focus on the maximum of equilibrium revenues of each second-price sealed-bid

auction with a buy price B. Here let ERB
max(B) be a function of the maximum equilibrium

revenues in second-price sealed-bid auctions with a buy price B. By Propositions 3 and 4 and
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the results in Appendix, we have

ERB
max(B) :=


E[R♯(0)] if 0 ≤ B ≤ ω

2

E[R♮(0)] if ω
2 < B ≤ ω

ω
3 if ω < B.

ERB
max(·) is continuous at the buy price B = ω

2 because E[R♯(0)] = 7ω
24 = E[R♮(0)].

To illustrate, we provide an example.

Example 1. Suppose that bidders’ types are distributed on the interval [0, 1]. Then, the

maximum of equilibrium revenues is given by

ERB
max(B) =


−B4−2B3−3B2+3B

3(1−B) if 0 ≤ B ≤ 1
2

B3−3B2+3B
3 if 1

2 < B ≤ 1
1
3 if 1 < B.

O

ERB
max(·)

B1
2

1

1
3

Figure 1: The maximum of equilibrium revenues ERB
max(B)

In Figure 1, ERB
max(·) is not monotone increasing with respect to a buy price B ∈ [0, 12 ].

On the other hand, ERB
max(·) is monotone increasing with respect to a buy price B ∈ (12 , ω].

Moreover, a seller cannot obtain a higher equilibrium revenue at an equilibrium where bidders

submit a buy price B than at a truth-telling strategy equilibrium in second-price sealed-bid

auctions without a buy price B.

Next, we focus on the minimum of equilibrium revenues of each second-price sealed-bid

auction with a buy price B. Here let ERB
min(B) be a function of the minimum equilibrium

revenues in second-price sealed-bid auctions with a buy price B. By Propositions 3 and 4 and
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the results in Appendix, we have

ERB
min(B) :=


E[R♯(b)] if 0 ≤ B ≤ (

√
2− 1)ω

E[R♯(b̂)] if (
√
2− 1)ω < B ≤ ω

2

E[R♮(b̃)] if ω
2 < B ≤ ω

0 if ω < B.

Note that b̂ =
√
ω2 − 2ωB and b̃ =

√
−ω2 + 2ωB, respectively. ERB

min(·) is continuous at the
buy price B = (

√
2− 1)ω because b = (

√
2− 1)ω = b̂. And ERB

min(·) is continuous at the buy

price B = ω
2 because E[R♯(0)] = 7ω

24 = E[R♮(0)].

Now we are ready to show the main theorem.

Theorem 1. Consider second-price sealed-bid auctions with a buy price B ∈ [0,+∞). Then,

a seller can always obtain a positive equilibrium revenue by introducing a buy price B properly.

Proof. See Appendix.

In the case that a seller sets the buy price B = 0, she obtains zero equilibrium revenue. If the

seller sets a buy price B that is greater than the highest possible type ω, no bidder intends

to submit the buy price B at any equilibrium. Thus, a rational seller does not set such buy

prices B.

We give an illustrative example.

Example 2. Suppose that bidders’ types are distributed on the interval [0, 1]. Then, the

minimum of equilibrium revenues is given by

ERB
min(B) =


−B4−B3−B2+B

1−B if 0 ≤ B ≤
√
2− 1

−3(
√
1−2B)4−(

√
1−2B)3(1−B)−B4−2B3−3B2+3B

3(1−B) if
√
2− 1 < B ≤ 1

2
−(

√
−1+2B)3+B3−3B2+3B

3 if 1
2 < B ≤ 1

0 if 1 < B.

In Figure 2, ERB
min(·) is not monotone increasing with respect to a buy price B ∈ [0, 12 ].

On the other hand, ERB
min(·) is monotone decreasing with respect to a buy price B ∈ (12 , ω].

In Figure 2, ERB
min(·) is absolutely positive for any buy price B ∈ (0, 1).

5 Conclusion

We have investigated how the introduction of a buy price affects a seller’s equilibrium revenues.

In the analysis, we have looked at not only a truth-telling strategy equilibrium but also

elaborate pure strategy equilibria. For each buy price auction, we have characterized the set

of equilibrium revenues. We have shown that a seller can always obtain a positive equilibrium

revenue by setting a buy price properly. On the other hand, the minimum of equilibrium
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O

ERB
min(·)

B1
2

1

3
10

√
2− 1

Figure 2: The minimum of equilibrium revenues ERB
min(B)

revenues is zero in second-price sealed-bid auctions without a buy price. By introducing a

buy price, thus, a seller can avoid a risk that she may obtain zero equilibrium revenue. Our

results provide a seller a new reason to use a buy price in Internet auctions.

Appendix

Proof of Proposition 1

We organize the proof in two steps.

Step 1. We show that each element in the interval [0, ω3 ] is an equilibrium revenue.

Fix b ∈ [0, ω] arbitrarily. Then, consider the strategy profile σ† = (σ†
i (·), σ

†
j(·)) such that

σ†
i (ti) =

{
0 if 0 ≤ ti ≤ b

ti if b < ti ≤ ω

and

σ†
j(tj) =

{
b if 0 ≤ tj ≤ b

tj if b < tj ≤ ω.

We show that the strategy profile σ† is an equilibrium.13 Consider incentive constraints of

13In Blume and Heidhues (2001), it is shown that a strategy profile like the strategy profile σ† is an equilib-
rium.
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bidder i. For all ti ∈ [0, b], he obtains at most zero expected payoff by submitting other bids,

for example the bid b. For all ti ∈ (b, ω], he only reduces his expected payoff if he submits a

bid that is greater or less than his type ti. Next, consider incentive constraints of bidder j.

For all tj ∈ [0, b], he only reduces his expected payoff if he submits a bid that is greater or

less than the bid b. For all tj ∈ (b, ω], he cannot improve his expected payoff by submitting

a bid that is greater or less than his type tj . Thus, the strategy profile σ† is an equilibrium.

At the equilibrium σ†, the seller receives the equilibrium revenue∫ ω

b

(∫ ω

ti

tif(tj)dtj

)
f(ti)dti +

∫ b

0

(∫ ω

b
bf(ti)dti

)
f(tj)dtj +

∫ ω

b

(∫ ω

tj

tjf(ti)dti

)
f(tj)dtj

=
ω3 − b3

3ω2
.

By the way of construction of the strategy profile σ†, each element in the interval [0, ω3 ] is

an equilibrium revenue.

Step 2. We show that the equilibrium revenue ω
3 is the maximum equilibrium revenue.

We consider whether there exists an equilibrium that yields a greater equilibrium revenue

than that of a truth-telling strategy equilibrium.

At any equilibrium, there are at most one interval (t, t) of types in which one bidder’s all

types in the interval (t, t) submit the bid t, and the other bidder’s all types in the interval

(t, t) submit the bid t. Fix 0 ≤ t ≤ t ≤ ω arbitrarily. Then, consider the strategy profile

σ′ = (σ′
i(·), σ′

j(·)) such that

σ′
i(ti) =


ti if 0 ≤ ti ≤ t

t if t < ti < t

ti if t ≤ ti ≤ ω

and

σ′
j(tj) =


tj if 0 ≤ tj ≤ t

t if t < tj < t

tj if t ≤ tj ≤ ω.

Consider incentive constraints of bidder i. For all ti ∈ [0, t], he reduces his expected

payoff by submitting a bid that is greater or less than his type ti. For all ti ∈ (t, t), he

obtains at most the same expected payoff even by submitting other bids. For all ti ∈ [t, ω], he

reduces his expected payoff by submitting a bid that is greater or less than his type ti. Next,

consider incentive constraints of bidder j. For all tj ∈ [0, t], he reduces his expected payoff

by submitting a bid that is greater or less than his type tj . For all tj ∈ (t, t), he obtains at

most the same expected payoff by submitting other bids. For all tj ∈ [t, ω], he reduces his
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expected payoff by submitting a bid that is greater or less than his type tj . From the above

argument, the strategy profile σ′ is an equilibrium.

Here let E[R∗] and E[R′] be the equilibrium revenue of a truth-telling strategy equlibrium

and that of the equilibrium σ′, respectively. We can find clear differences in a seller’s expected

revenue for three cases: (i) Both bidders’ types are in the interval (t, t). (ii) Bidder i’s type

is in the interval (t, t) and bidder j’s type is not less than the type t. (iii) Bidder i’s type is

not less than the type t and bidder j’s type is in the interval (t, t). Note that a winner of the

cases (ii) and (iii) does not change, respectively. Then, we have

E[R∗]− E[R′] =

∫ t

t

(∫ ω

tj

tjf(ti)dti

)
f(tj)dtj +

∫ t

t

(∫ ω

ti

tif(tj)dtj

)
f(ti)dti

−
∫ t

t

(∫ ω

t
tf(ti)dti

)
f(tj)dtj −

∫ t

t

(∫ ω

t
tf(tj)dtj

)
f(ti)dti

=
(t− t)3

3ω2
≥ 0.

Thus, E[R∗] is greater than or equal to E[R′]. In other words, ω
3 is the maximum equilibrium

revenue in second-price sealed-bid auctions without a buy price B.

A second-price auction with the buy price B = 0

We consider a second-price sealed-bid auction with the buy price B = 0. In this auction, a

strategy profile in which both bidders’ all types submit the buy price B is a unique equilibrium.

Thus, the set of equilibrium revenues is {0}.

Second-price auctions with a buy price B ∈ (ω,+∞)

We consider second-price sealed-bid auctions with a buy price B ∈ (ω,+∞). Since the buy

price B is greater than the highest possible type ω, no one bids the buy price B at any

equilibrium. Thus, the sets of equilibrium revenues are the same as those of second-price

sealed-bid auctions without a buy price B.

Proof of Proposition 2

Suppose that both bidders’ all types which are not less than the buy price B submit it. To

be an equilibrium, one of the bidders whose type is less than the type b must submit a bid

that is not greater than own type. Without loss of generality, let bidder i whose type is less

than the type b submit a bid that is not greater than own type.

Consider incentive constraints of bidder i. We wonder whether for all ti ∈ [B,ω],

∫ b

0
(ti −B)f(tj)dtj +

1

2

∫ ω

B
(ti −B)f(tj)dtj ≥

∫ b

0
(ti − tj)f(tj)dtj (1)

13



holds. The RHS of (1) is the most profitable deviation among all strategy profiles such that

both bidders’ all types which are not less than the buy price B submit it. Calculating (1),

we have
1

2ω

{
(ω −B)ti +B2 − ωB − 2bB + b

2} ≥ 0.

Since it is assumed that the bid b is arbitrarily close to the buy price B, we can evaluate b at

B. Substituting B for b, we have

1

2ω

{
(ω −B)ti − ωB

}
≥ 0.

Here let

ϕ(ti) := (ω −B)ti − ωB.

For ti ∈ [B,ω], the function ϕ(·) is increasing with respect to ti. To be an equilibrium, thus,

it is sufficient to show that (1) holds for ti = B. However, we have

−B2 ≥ 0,

which does not hold.

From the above argument, any strategy profiles such that both bidders’ all types which

are not less than the buy price B submit it is not an equilibrium.

Proof of Proposition 3

We organize the proof in three steps.

Step 1. We show that a certain strategy profile is an equilibrium.

Fix 0 ≤ t ≤ t ≤ b arbitrarily. Then, consider the following strategy profile σS =

(σS
i (·), σS

j (·)) such that

σS
i (ti) =



ti if 0 ≤ ti ≤ t

t if t < ti < t

ti if t ≤ ti ≤ b

b if B ≤ ti ≤ tSi
B if tSi < ti ≤ ω
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and

σS
j (tj) =



tj if 0 ≤ tj ≤ t

t if t < tj < t

tj if t ≤ tj ≤ b

b if B ≤ tj ≤ tSj
B if tSj < tj ≤ ω.

Here let tSi := ωB−(t−t)2

ω−B and tSj := ωB+(t−t)2

ω−B , respectively.

We show that the strategy profile σS is an equilibrium. Consider incentive constraints of

bidder i. For all ti ∈ [0, t], he reduces his expected payoff by submitting a bid that is greater

or less than his type ti. For all ti ∈ (t, t), he obtains at most the same expected payoff even

by submitting other bids. For all ti ∈ [t, b], he reduces his expected payoff by submitting a

bid that is greater or less than his type ti. For all ti ∈ [B, tSi ],∫ t

0
(ti − tj)f(tj)dtj +

∫ t

t
(ti − t)f(tj)dtj +

∫ b

t
(ti − tj)f(tj)dtj +

1

2

∫ tSj

B
(ti − b)f(tj)dtj

≥
∫ tSj

0
(ti −B)f(tj)dtj +

1

2

∫ ω

tSj

(ti −B)f(tj)dtj

(2)

must hold. For all ti ∈ (tSi , ω],∫ tSj

0
(ti −B)f(tj)dtj +

1

2

∫ ω

tSj

(ti −B)f(tj)dtj

≥
∫ t

0
(ti − tj)f(tj)dtj +

∫ t

t
(ti − t)f(tj)dtj +

∫ b

t
(ti − tj)f(tj)dtj +

1

2

∫ tSj

B
(ti − b)f(tj)dtj

(3)

must hold. Thus, the systems of inequalities (2) and (3) are satisfied if and only if

∫ t

0
(tSi − tj)f(tj)dtj +

∫ t

t
(tSi − t)f(tj)dtj +

∫ b

t
(tSi − tj)f(tj)dtj +

1

2

∫ tSj

B
(tSi − b)f(tj)dtj

=

∫ tSj

0
(tSi −B)f(tj)dtj +

1

2

∫ ω

tSj

(tSi −B)f(tj)dtj

(4)

holds.

Next, consider incentive constraints of bidder j. For all tj ∈ [0, t], he reduces his expected

payoff by submitting a bid that is greater or less than his type tj . For all tj ∈ (t, t), he obtains

at most the same expected payoff by submitting other bids. For all tj ∈ [t, b], he reduces his
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expected payoff by submitting a bid that is greater or less than his type tj . For all tj ∈ [B, tSj ],∫ t

0
(tj − ti)f(ti)dti +

∫ t

t
(tj − t)f(ti)dti +

∫ b

t
(tj − ti)f(ti)dti +

1

2

∫ tSi

B
(tj − b)f(ti)dti

≥
∫ tSi

0
(tj −B)f(ti)dti +

1

2

∫ ω

tSi

(tj −B)f(ti)dti

(5)

must hold. For all tj ∈ (tSj , ω],∫ tSi

0
(tj −B)f(ti)dti +

1

2

∫ ω

tSi

(tj −B)f(ti)dti

≥
∫ t

0
(tj − ti)f(ti)dti +

∫ t

t
(tj − t)f(ti)dti +

∫ b

t
(tj − ti)f(ti)dti +

1

2

∫ tSi

B
(tj − b)f(ti)dti

(6)

must hold. Thus, the systems of inequalities (5) and (6) are satisfied if and only if

∫ t

0
(tSj − ti)f(ti)dti +

∫ t

t
(tSj − t)f(ti)dti +

∫ b

t
(tSj − ti)f(ti)dti +

1

2

∫ tSi

B
(tSj − b)f(ti)dti

=

∫ tSi

0
(tSj −B)f(ti)dti +

1

2

∫ ω

tSi

(tSj −B)f(ti)dti

(7)

holds. Calculating (4) and (7), respectively, we have

tSi =
ωB − (t− t)2

ω −B

and

tSj =
ωB + (t− t)2

ω −B
.

Thus, the strategy profile σS is an equilibrium.

Step 2. We show that it is enough to consider the equilibrium σ♯.

The strategy profile σS is an equilibrium. And the seller obtains the equilibrium revenue,
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which is given by

∫ t

0

(∫ tSj

ti

tif(tj)dtj

)
f(ti)dti +

∫ t

t

(∫ tSj

t
tf(tj)dtj

)
f(ti)dti +

∫ b

t

(∫ tSj

ti

tif(tj)dtj

)
f(ti)dti

+

∫ tSi

B

(∫ tSj

B
bf(tj)dtj

)
f(ti)dti +

∫ ω

0

(∫ ω

tSj

Bf(tj)dtj

)
f(ti)dti +

∫ t

0

(∫ tSi

tj

tjf(ti)dti

)
f(tj)dtj

+

∫ t

t

(∫ tSi

t
tf(ti)dti

)
f(tj)dtj +

∫ b

t

(∫ tSi

tj

tjf(ti)dti

)
f(tj)dtj +

∫ tSj

0

(∫ ω

tSi

Bf(ti)dti

)
f(tj)dtj

=
1

6ω2

{
2t3 + 3(tSi − tSj )t

2 − 6(tSi − tSj )tt− 6t2t+ 6tt
2
+ 3(tSi − tSj )t

2 − 2t
3

+ 3b
2
tSi − 6btSi B + 6btSi t

S
j + 3b

2
tSj − 6btSj B − 6tSi t

S
j B − 4b

3
+ 6bB2 + 6ω2B

}
.

Here let E[RS(t, t)] := 1
6ω2

{
2t3 + 3(tSi − tSj )t

2 − 6(tSi − tSj )tt− 6t2t+ 6tt
2
+ 3(tSi − tSj )t

2 −
2t

3
+3b

2
tSi −6btSi B+6btSi t

S
j +3b

2
tSj −6btSj B−6tSi t

S
j B−4b

3
+6bB2+6ω2B

}
. The equilibrium

revenue E[RS(·, ·)] is a function of the types t and t on the domain [0, b]× [0, b]. Evaluating

b at B, we have

1

6ω2

{
2t3+3(tSi −tSj )t

2−6(tSi −tSj )tt−6t2t+6tt
2
+3(tSi −tSj )t

2−2t
3
+2B3−3(tbi+tbj)B

2+6ω2B
}
.

Partially differentiating E[RS(·, ·)] with respect to t, we have

∂E[RS(t, t)]

∂t
=

1

2ω2

(
2ttSj + 2tt(tSj )

′
t − t2(tSj )

′
t − 2t2 − 2ttSj − t

2
(tSj )

′
t − (tSj )

′
tB

2

− (tSi )
′
tB

2 + t2(tSi )
′
t + 2ttSi + t

2
(tSi )

′
t − 2ttSi − 2tt(tSi )

′
t − 2t

2
+ 4tt

)
.

(8)

Here let (tSi )
′
t
and (tSj )

′
t
be a partial derivative of tSi with respect to t and a partial derivative

of tSj with respect to t, respectively. Substituting

(tSi )
′
t = −2(t− t)

ω −B

and

(tSj )
′
t =

2(t− t)

ω −B

into (8), we have

∂E[RS(t, t)]

∂t
= − (t− t)2

ω2(ω −B)
{4(t− t) + (ω −B)} < 0.
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Similarly, partially differentiating E[RS(·, ·)] with respect to t, we have

∂E[RS(t, t)]

∂t
=

1

2ω2

(
2ttSj + 2tt(tSj )

′
t − 2ttSj − t2(tSj )

′
t − 4tt+ 2t2 − t

2
(tSj )

′
t − (tSj )

′
tB

2

− (tSi )
′
tB

2 + 2ttSi + t2(tSi )
′
t + t

2
(tSi )

′
t − 2ttSi − 2tt(tSi )

′
t + 2t

2)
.

(9)

Here let (tSi )
′
t and (tSj )

′
t be a partial derivative of tSi with respect to t and a partial derivative

of tSj with respect to t, respectively.

Substituting

(tSi )
′
t =

2(t− t)

ω −B

and

(tSj )
′
t = −2(t− t)

ω −B

into (9), we have

∂E[RS(t, t)]

∂t
=

(t− t)2

ω2(ω −B)
{4(t− t) + (ω −B)} > 0.

From the above argument, E[RS(·, ·)] is minimized at (t, t) = (0, b) and maximized at

(t, t) = (t, t) for all t ∈ [0, b]. These facts imply that it is enough to consider the equilibrium

σ♯.

Step 3. We derive the domain of the equilibrium revenue E[R♯(b)].

We can rewrite both thresholds tSi and tSj for the equilibrium σ♯ as follows.

t♯i :=
ωB − b2

ω −B

and

t♯j :=
ωB + b2

ω −B
.

We need to check that both thresholds t♯i and t♯j are well-defined for each b ∈ [0, b]. First

we consider the threshold t♯i. If b = b, we have

t♯i =
ωB − b

2

ω −B
.
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Evaluating b at B, we have

t♯i = B.

As the threshold t♯i is decreasing with respect to the type b, the threshold t♯i is always greater

than or equal to the buy price B for each b ∈ [0, b]. If b = 0, on the other hand, we have

t♯i =
ωB

ω −B
,

which is less than the type ω. Thus, the threshold t♯i is always less than the type ω for each

b ∈ [0, b].

Now, we consider the threshold t♯j . To be less than or equal to the type ω,

t♯j =
ωB + b2

ω −B
≤ ω ⇐⇒ b ≤

√
ω2 − 2ωB

must hold. Note that b ≥ 0. Moreover, we need to check that b ≤
√
ω2 − 2ωB. Raising both

sides to the second power, we have

b
2 ≤ ω2 − 2ωB.

Evaluating b at B, we have

B ≤ (
√
2− 1)ω.

Thus, we can choose the b ∈ [0, b] arbitrarily if B ≤ (
√
2− 1)ω. And we can only choose the

type b from the interval
[
0,
√
ω2 − 2ωB

]
if B > (

√
2− 1)ω.

Proof of Proposition 4

We organize the proof in two steps.

Step 1. We show that a certain strategy profile is an equilibrium.

Fix 0 ≤ t ≤ t ≤ b arbitrarily. Then, consider the strategy profile σN = (σN
i (·), σN

j (·)) such
that

σN
i (ti) =


ti if 0 ≤ ti ≤ t

t if t < ti < t

ti if t ≤ ti ≤ b

b if B ≤ ti ≤ ω
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and

σN
j (tj) =


tj if 0 ≤ tj ≤ t

t if t < tj < t

tj if t ≤ tj ≤ b

b if B ≤ tj ≤ ω.

We show that the strategy profile σN is an equilibrium. Consider incentive constraints of

bidder i. For all ti ∈ [0, t], he reduces his expected payoff by submitting a bid that is greater

or less than his type ti. For all ti ∈ (t, t), he reduces his expected payoff by submitting a bid

that is greater than the bid t. For all ti ∈ [t, b], he reduces his expected payoff by submitting

a bid that is greater or less than his type ti.

For all ti ∈ [B,ω], we need to consider what the most profitable deviation is. Here let

γi(ti) :=

∫ ω

0
(ti −B)f(tj)dtj − lim

ε→0

{∫ t

0
(ti − tj)f(tj)dtj +

∫ t

t
(ti − t)f(tj)dtj +

∫ b−ε

t
(ti − tj)f(tj)dtj

}
=

1

ω

{
(ω −B)ti − ωB +

B2

2
+

(t− t)2

2

}
.

(10)

The first term in the first line of (10) is the expected payoff obtained by submitting the buy

price B. The second term in the first line of (10) is the expected payoff obtained by submitting

a bid which is less than the bid b. Note that we evaluate b at B. For ti ∈ [B,ω], the function

γi(·) is increasing with respect to ti.

Next, consider incentive constraints of bidder j. For all tj ∈ [0, t], he reduces his expected

payoff by submitting a bid that is greater or less than his type tj . For all tj ∈ (t, t), he

reduces his expected payoff by submitting a bid that is less than the bid t. For all tj ∈ [t, b],

he reduces his expected payoff by submitting a bid that is greater or less than his type tj .

For all ti ∈ [B,ω], we need to consider what the most profitable deviation is.

γj(tj) :=

∫ ω

0
(tj −B)f(ti)dti − lim

ε→0

{∫ t

0
(tj − ti)f(ti)dti +

∫ t

t
(tj − t)f(ti)dti +

∫ b−ε

t
(tj − ti)f(ti)dti

}
=

1

ω

{
(ω −B)tj − ωB +

B2

2
− (t− t)2

2

}
.

(11)

The first term in the first line of (11) is the expected payoff obtained by submitting the buy

price B. The second term in the first line of (11) is the expected payoff obtained by submitting

a bid which is less than the bid b. Note that we evaluate b at B. For tj ∈ [B,ω], the function

γj(·) is increasing with respect to tj . And γj(B) < 0.
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We need to consider the following four cases.

Case 1: γi(ω) < 0 and γj(ω) < 0.

Calculating γi(ω) < 0 and γj(ω) < 0, we have

2ω −
√
2ω2 − (t− t)2 < B.

For all ti ∈ [B,ω],

∫ t

0
(ti − tj)f(tj)dtj +

∫ t

t
(ti − t)f(tj)dtj +

∫ b

t
(ti − tj)f(tj)dtj +

1

2

∫ ω

B
(ti − b)f(tj)dtj

≥
∫ t

0
(ti − tj)f(tj)dtj +

∫ t

t
(ti − t)f(tj)dtj +

∫ b

t
(ti − tj)f(tj)dtj

(12)

and for all tj ∈ [B,ω],

∫ t

0
(tj − ti)f(ti)dti +

∫ t

t
(tj − t)f(ti)dti +

∫ b

t
(tj − ti)f(ti)dti +

1

2

∫ ω

B
(tj − b)f(ti)dti

≥
∫ t

0
(tj − ti)f(ti)dti +

∫ t

t
(tj − t)f(ti)dti +

∫ b

t
(tj − ti)f(ti)dti

(13)

must hold. Clearly, both the systems of inequalities (12) and (13) hold. Thus, the strategy

profile σN is an equilibrium in second-price sealed-bid auctions with a buy price B ∈ [2ω −√
2ω2 − (t− t)2, ω].

Case 2: γi(ω) ≥ 0 and γj(ω) < 0.

Calculating γi(ω) ≥ 0 and γj(ω) < 0, we have

2ω −
√
2ω2 + (t− t)2 < B ≤ 2ω −

√
2ω2 − (t− t)2.

For all ti ∈ [B, tNi ],

∫ t

0
(ti − tj)f(tj)dtj +

∫ t

t
(ti − t)f(tj)dtj +

∫ b

t
(ti − tj)f(tj)dtj +

1

2

∫ ω

B
(ti − b)f(tj)dtj

≥
∫ t

0
(ti − tj)f(tj)dtj +

∫ t

t
(ti − t)f(tj)dtj +

∫ b

t
(ti − tj)f(tj)dtj

(14)
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and for all ti ∈ (tNi , ω],

∫ t

0
(ti − tj)f(tj)dtj +

∫ t

t
(ti − t)f(tj)dtj +

∫ b

t
(ti − tj)f(tj)dtj +

1

2

∫ ω

B
(ti − b)f(tj)dtj

≥
∫ ω

0
(ti −B)f(tj)dtj

(15)

and for all tj ∈ [B,ω],

∫ t

0
(tj − ti)f(ti)dti +

∫ t

t
(tj − t)f(ti)dti +

∫ b

t
(tj − ti)f(ti)dti +

1

2

∫ ω

B
(tj − b)f(ti)dti

≥
∫ t

0
(tj − ti)f(ti)dti +

∫ t

t
(tj − t)f(ti)dti +

∫ b

t
(tj − ti)f(ti)dti

(16)

must hold. Here let tNi :=
{
2ωB − B2 − (t − t)2

}
/2(ω − B). Clearly, both the systems

of inequalities (14) and (16) hold. Thus, it is sufficient to consider whether the system of

inequalities (15) holds or not.

Calculating (15), we have

1

2ω

{
−(ω +B − 2b)ti − (t− t)2 − b

2 − bω + bB + 2ωB
}
≥ 0.

Evaluating b at B, we have

1

2ω
{−(ω −B)ti − (t− t)2 + ωB} ≥ 0.

Here let

ιi(ti) := −(ω −B)ti − (t− t)2 + ωB.

For ti ∈ (tNi , ω], ιi(·) is decreasing with respect to ti. Thus, it is sufficient to show that (15)

holds for ti = ω. That is,

B ≥ (t− t)2 + ω2

2ω
.

Here we consider whether tNi is well-defined.

tNi −B =
2ωB −B2 − (t− t)2

2(ω −B)
−B

=
B2 − (t− t)2

2(ω −B)
≥ 0.

Thus, tNi ≥ B. Next, we consider whether

tNi =
2ωB −B2 − (t− t)2

2(ω −B)
≤ ω. (17)
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Calculating (17), we have

B ≤ 2ω −
√
2ω2 − (t− t)2.

Thus, tNi ≤ ω.

To summarize, the strategy profile σN is an equilibrium in second-price sealed-bid auctions

with a buy priceB ∈ [2ω−
√
2ω2 + (t− t)2, 2ω−

√
2ω2 − (t− t)2] when 2ω−

√
2ω2 + (t− t)2 >

(t−t)2+ω2

2ω . And the strategy profile σN is an equilibrium in second-price sealed-bid auctions

with a buy price B ∈ [ (t−t)2+ω2

2ω , 2ω−
√

2ω2 − (t− t)2] when 2ω−
√
2ω2 + (t− t)2 ≤ (t−t)2+ω2

2ω .

Case 3: γi(ω) < 0 and γj(ω) ≥ 0.

There is no buy price B such that γi(ω) < 0 and γj(ω) ≥ 0 hold simultaneously.

Case 4: γi(ω) ≥ 0 and γj(ω) ≥ 0.

Calculating γi(ω) ≥ 0 and γj(ω) ≥ 0, we have

B ≤ 2ω −
√
2ω2 + (t− t)2.

For all ti ∈ [B, tNi ],

∫ t

0
(ti − tj)f(tj)dtj +

∫ t

t
(ti − t)f(tj)dtj +

∫ b

t
(ti − tj)f(tj)dtj +

1

2

∫ ω

B
(ti − b)f(tj)dtj

≥
∫ t

0
(ti − tj)f(tj)dtj +

∫ t

t
(ti − t)f(tj)dtj +

∫ b

t
(ti − tj)f(tj)dtj

(18)

and for all ti ∈ (tNi , ω],

∫ t

0
(ti − tj)f(tj)dtj +

∫ t

t
(ti − t)f(tj)dtj +

∫ b

t
(ti − tj)f(tj)dtj +

1

2

∫ ω

B
(ti − b)f(tj)dtj

≥
∫ ω

0
(ti −B)f(tj)dtj

(19)

and for all tj ∈ [B, tNj ],

∫ t

0
(tj − ti)f(ti)dti +

∫ t

t
(tj − t)f(ti)dti +

∫ b

t
(tj − ti)f(ti)dti +

1

2

∫ ω

B
(tj − b)f(ti)dti

≥
∫ t

0
(tj − ti)f(ti)dti +

∫ t

t
(tj − t)f(ti)dti +

∫ b

t
(tj − ti)f(ti)dti

(20)
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and for all tj ∈ (tNj , ω],

∫ t

0
(tj−ti)f(ti)dti+

∫ t

t
(tj−t)f(ti)dti+

∫ b

t
(tj−ti)f(ti)dti+

1

2

∫ ω

B
(tj−b)f(ti)dti ≥

∫ ω

0
(tj−B)f(ti)dti

(21)

must hold. Clearly, both the systems of inequalities (18) and (20) hold. Thus, it is sufficient

to consider whether the systems of inequalities (19) and (21) hold or not.

Calculating (21), we have

1

2ω

{
−(ω +B − 2b)tj + (t− t)2 − b

2 − bω + bB + 2ωB
}
≥ 0.

Evaluating b at B, we have

1

2ω

{
−(ω −B)tj + (t− t)2 + ωB

}
≥ 0.

Here let

ιj(tj) := −(ω −B)tj + (t− t)2 + ωB.

For tj ∈ [B,ω], ιj(·) is decreasing with respect to tj . Thus, it is sufficient to show that (21)

holds for tj = ω. That is,

B ≥ −(t− t)2 + ω2

2ω
.

To summarize, the strategy profile σN is an equilibrium in second-price sealed-bid auctions

with a buy price B ∈ [ (t−t)2+ω2

2ω , 2ω−
√

2ω2 + (t− t)2] when 2ω−
√
2ω2 + (t− t)2 > (t−t)2+ω2

2ω .

And the strategy profile σN is not an equilibrium when 2ω −
√
2ω2 + (t− t)2 ≤ (t−t)2+ω2

2ω .

From the above argument, the strategy profile σN is an equilibrium in second-price sealed-

bid auctions with a buy price B ∈ [ (t−t)2+ω2

2ω , ω].

Step 2. We show that it is enough to consider the equilibrium σ♮.

The strategy profile σN is an equilibrium. And the seller receives the equilibrium revenue,

which is given by

∫ t

0

(∫ ω

ti

tif(tj)dtj

)
f(ti)dti +

∫ t

t

(∫ ω

t
tf(tj)dtj

)
f(ti)dti +

∫ b

t

(∫ ω

ti

tif(tj)dtj

)
f(ti)dti

+

∫ t

0

(∫ ω

tj

tjf(ti)dti

)
f(tj)dtj +

∫ t

t

(∫ ω

t
tf(ti)dti

)
f(tj)dtj +

∫ b

t

(∫ ω

tj

tjf(ti)dti

)
f(tj)dtj

+

∫ ω

B

(∫ ω

B
bf(ti)dti

)
f(tj)dtj

=
1

3ω2

{
−2b

3
+ 3b

2
ω + 3bω2 − 6ωbB + 3bB2 − (t− t)3

}
.
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Here let E[RN (t, t)] := 1
3ω2

{
−2b

3
+ 3b

2
ω + 3bω2 − 6ωbB + 3bB2 − (t− t)3

}
. The equilibrium

revenue E[RN (·, ·)] is a function of the types t and t on the domain [0, b]× [0, b]. Evaluating

b at B, we have
1

3ω2

{
3ω2B − 3ωB2 +B3 − (t− t)3

}
.

Clearly, E[RN (·, ·)] is decreasing with respect to t, and increasing with respect to t. Thus,

E[RN (·, ·)] is minimized at (t, t) = (0, b) and maximized at (t, t) = (t, t) for all t ∈ [0, b].

These facts imply that it is enough to consider the equilibrium σ♮.

Proof of Theorem 1

By Propositions 3 and 4, the minimum of equilibrium revenues of second-price sealed-bid

auctions with a buy price B ∈ [0, ω] is

E[R♯(b)] if 0 < B ≤ (
√
2− 1)ω

E[R♯(b̂)] if (
√
2− 1)ω < B ≤ ω

2

E[R♮(b̃)] if ω
2 < B ≤ ω.

At first, E[R♯(b)] ≤ E[R♯(b̂)] for any buy price B ∈ (0, ω2 ]. Thus, we consider E[R♯(b)]

instead of E[R♯(b̂)] for a buy price B ∈ ((
√
2− 1)ω, ω2 ]. Calculating E[R♯(b)], we have

E[R♯(b)] =
B

ω2(ω −B)
(ω3 − ω2B − ωB2 −B3).

Note that we evaluate b at B. B
ω2(ω−B)

is positive for any buy price B ∈ (0, ω2 ]. Differentiating

ω3 − ω2B − ωB2 −B3 with respect to B, we have

−3

(
B +

ω

3

)2

− 2

3
ω2 < 0.

Thus, ω3 − ω2B − ωB2 −B3 is minimized at B = ω
2 . In this case, we have

ω3 − ω2B − ωB2 −B3 =
ω3

8
> 0.

To summarize, E[R♯(b)] is positive for any buy price B ∈ (0, ω2 ]. When B = (
√
2 − 1)ω, in

addition, b = (
√
2− 1)ω = b̂. Thus, E[R♯(b)] = E[R♯(b̂)] at the buy price B = (

√
2− 1)ω.

On the other hand,

E[R♮(b̃)] ≥ 1

ω
(−B2 + ωB).

Note that we evaluate b at B. Differentiating −B2 + ωB with respect to B, we have

−2B + ω < 0.
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Thus, 1
ω (−B2 + ωB) is minimized at B = ω. In this case, we have

1

ω
(−B2 + ωB) = 0.

To summarize, E[R♮(b̃)] is positive for any buy price B ∈ (ω2 , ω). Note that E[R♯(b̂)] = 7ω
24 =

E[R♮(b̃)] at the buy price B = ω
2 because b̂ = 0 = b̃.

From the above argument, a seller always obtains a positive equilibrium revenue by intro-

ducing a buy price appropriately.

The effects of a reserve price on equilibrium revenues

We reconsider second-price sealed-bid auctions without a buy price B. In these auctions,

introducing a reserve price is the most straightforward way for a seller to guarantee a positive

equilibrium revenue. We then consider the effects of a reserve price on equilibrium revenues.

Suppose that a seller sets a reserve price r ∈ [0, ω] arbitrarily. Fix b ∈ [r, ω] arbitrarily.

Then, the strategy profile σ♭ such that

σ♭
i (ti) =


0 if 0 ≤ ti ≤ r

r if r < ti < b

ti if b ≤ ti ≤ ω

and

σ♭
j(tj) =


0 if 0 ≤ tj ≤ r

b if r < tj < b

tj if b ≤ tj ≤ ω.

The strategy profile σ♭ is an equilibrium. And the seller obtains the equilibrium revenue,

which is given by
1

3ω2

(
ω3 + 3r2ω − 3r3 − b3 + 3b2r − 3br2

)
.

Here let E[Rr(b)] := 1
3ω2 (ω

3+3r2ω−3r3−b3+3b2r−3br2). The equilibrium revenue E[Rr(·)]
is a function of the type b on the domain [r, ω].

We then have a similar result to that of Proposition 1.

Proposition 5. Consider second-price sealed-bid auctions with a reserve price r ∈ [0, ω].

Then, the set of equilibrium revenues is
[
E[Rr(ω)], E[Rr(r)]

]
.
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Proof. Fix r ≤ t ≤ t ≤ ω arbitrarily. Then, consider the following strategy profile.

σF
i (ti) =


0 if 0 ≤ ti ≤ r

ti if r < ti ≤ t

t if t < ti < t

ti if t ≤ ti ≤ ω

and

σF
j (tj) =


0 if 0 ≤ tj ≤ r

tj if r < tj ≤ t

t if t < tj < t

tj if t ≤ tj ≤ ω.

We show that the strategy profile σF is an equilibrium. Consider incentive constraints of

bidder i. For all ti ∈ [0, r], he reduces his expected payoff by submitting a bid that is greater

than the reserve price r. For all ti ∈ (r, t], he reduces his expected payoff by submitting a

bid that is greater or less than his type ti. For all ti ∈ (t, t), he reduces his expected payoff

by submitting other bids, for example, the bid t. For all ti ∈ [t, ω], he reduces his expected

payoff by submitting a bid that is greater or less than his type ti.

Similarly, consider incentive constraints of bidder j. For all tj ∈ [0, r], he reduces his

expected payoff by submitting a bid that is greater than the reserve price r. For all tj ∈ (r, t],

he reduces his expected payoff by submitting a bid that is greater or less than his type tj .

For all tj ∈ (t, t), he reduces his expected payoff by submitting other bids, for example, the

bid t. For all tj ∈ [t, ω], he reduces his expected payoff by submitting a bid that is greater or

less than his type tj .

The strategy profile σF is an equilibrium. And the seller obtains the equilibrium revenue,

which is given by∫ r

0

(∫ ω

r
rf(tj)dtj

)
f(ti)dti +

∫ t

r

(∫ ω

ti

tif(tj)dtj

)
f(ti)dti +

∫ t

t

(∫ ω

t
tf(tj)dtj

)
f(ti)dti

+

∫ ω

t

(∫ ω

ti

tif(tj)dtj

)
f(ti)dti +

∫ r

0

(∫ ω

r
rf(ti)dti

)
f(tj)dtj +

∫ t

r

(∫ ω

tj

tjf(ti)dti

)
f(tj)dtj

+

∫ t

t

(∫ ω

t
tf(ti)dti

)
f(tj)dtj +

∫ ω

t

(∫ ω

tj

tjf(ti)dti

)
f(tj)dtj

=
1

3ω2

{
ω3 + 3r2ω − 4r3 − (t− t)3

}
.

Here let E[Rr(t, t)] = 1
3ω2 {ω3+3r2ω−4r3−(t−t)3}. Clearly, E[Rr(·, ·)] is decreasing with

respect to t and increasing with respect to t. Thus, E[Rr(·, ·)] is minimized at (t, t) = (r, ω)

and maximized at (t, t) = (t, t) for all t ∈ [r, ω]. Q.E.D.
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If a seller sets a reserve price r, then the equilibrium revenue is restricted. In a result, she

can obtain a positive equilibrium revenue. And the seller acquires the maximum equilibrium

revenue at a symmetric strategy equilibrium.

As well as the case of second-price sealed-bid auctions with a buy price B, we focus on the

maximum of equilibrium revenues of each second-price sealed-bid auction with a reserve price

r. Here let ERr
max(r) be a function of the maximum equilibrium revenues in second-price

sealed-bid auctions with a reserve price r. Then, we have

ERr
max(r) =

1

3ω2
(−4r3 + 3ωr2 + ω3) if 0 ≤ r ≤ ω.

To illustrate, we provide an example.

Example 3. Suppose that bidders’ types are distributed on the interval [0, 1]. Then, the

maximum of equilibrium revenues is given by

ERr
max(r) = −4

3
r3 + r2 +

1

3
if 0 ≤ r ≤ ω.

O

ERr
max(·)

r1
2

1

1
3

Figure 3: The maximum of equilibrium revenues ERr
max(r)

In Figure 3, ERr
max(·) is monotone increasing with respect to a reserve price r ∈ [0, 12 ]. On

the other hand, ERr
max(·) is monotone decreasing with respect to a reserve price r ∈ (12 , ω].

Next, we focus on the minimum of equilibrium revenues of each second-price sealed-bid

auction with a reserve price r. Here let ERr
min(r) be a function of the minimum equilibrium

revenues in second-price sealed-bid auctions with a reserve price r. Then, we have

ERr
min(r) =

1

ω2
(−r3 + ω2r) if 0 ≤ r ≤ ω.
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We give an illustrative example.

Example 4. Suppose that bidders’ types are distributed on the interval [0, 1]. Then, the

minimum of equilibrium revenues is given by

ERr
min(r) = −r3 + r if 0 ≤ r ≤ ω.

O

ERr
min(·)

r1√
3

1

1
3

Figure 4: The minimum of equilibrium revenues ERr
min(r)

In Figure 4, ERB
min(·) is monotone increasing with respect to a reserve price r ∈ [0, 1√

3
]. On

the other hand, ERB
min(·) is monotone decreasing with respect to a reserve price r ∈ ( 1√

3
, ω].

In Figure 4, ERB
min(·) is absolutely positive for any reserve price r ∈ (0, 1).
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