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Abstract

We propose an efficient posterior sampling algorithm for a spatial dynamic panel data model in terms

of Bayesian inference. The stationary condition of the model mutually depends on three parameters: si-

multaneous and lagged spatial dependencies and serial correlation. In practice, the interdependence be-

tween these parameters yields low convergence to their target marginal distribution and fails to converge

in the time available. To accelerate sampling efficiency, we develop a Bayesian estimation algorithm for

these parameters using a Tailor approximation and blocked Metropolis-Hastings (TaB-MH) algorithm.

The experimental study and illustration show that the TaB-MH algorithm is superior to the random walk

MH.
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1 Introduction

Bayesian spatial econometrics attracts attention as empirical studies in spatial economics increasingly aim

to examine geographical relationships and temporal structures. Since the contribution of a seminal work

(Anselin, 1988) and comprehensive textbook (LeSage and Pace, 2009), the Bayesian approach, that is,

Markov chain Monte Carlo (MCMC) methods and theory, rapidly extend to various empirical issues on

spatial econometrics1. Gibbs sampling is strategy of sequentially drawing from the full conditional posterior

distributions and is the main framework in MCMC methods. This sampling allows for a sophisticated

model of spatial dependence and heterogeneity (Anselin, 2010), and complex hierarchical specification

(Lacombe and McIntyre, 2016). Improvements in computational processing enabled such extensions of

spatial econometric modeling.

Recent developments in empirical analysis show an increasing interest in high-dimensional data on

land prices, micro economic data on states or municipalities, and so on. Analyses of high-dimensional

data requires high numerical calculations. We focus on the accelerating MCMC algorithm for estimating

spatial parameters, which one of main streams of in the literature on improving numerical computations and

estimation methods2. However, Bayesian computation has critical issues such as simulation convergence

and posterior propriety.

Gibbs sampling works well when the number of iterations is large. However, a researcher must decide

how many times to select the iteration number. As mentioned above, increasing the iterations in handling a

large data has a high computational cost and takes a lot of time in practice. Thus, for an empirical researcher,

the desirable properties for sampling methods are efficiency and mixing well, which yield fast convergence

or reduces the number of the Monte Carlo simulations. These points are often overlooked in empirical

analysis. For spatial models, there are some studies on the development of sampling methods (Ohtsuka and

Kakamu, 2009; Bivand, et al., 2014; Ohtsuka and Kakamu, 2015; Wolf et al., 2018) and discussions of the

properties of sampling methods. Some studies advocate the importance of showing how the techniques are

efficient or inefficient.

In this work, we deal with a spatial dynamic panel data (SDPD) model. Prior works use spatial panel

data models to analyze spatial dependency and spillover effects in several fields, such as regional economics,

urban economics, and real estate. Among the existing models, the SDPD model has the advantage of being

able to evaluate how observations are related over time and space because the model allows spatiotemporal

interdependency involving the dependent variable. A specification of this model has been development (see

1Arbia (2014) and Elhorst (2014) published well known, sophisticated textbooks, and summarized from the viewpoints of
frequentist approaches.

2Typical improvements in numerical computations adopt approaches to the determinant of a weight matrix, such as Chebyshev
approximation (Pace and LeSage, 2004) and characteristic polynomial approach (Smirnov and Anselin, 2001).

2



Elhorts, 2004, for an excellent review). In this work, we extend the SDPD model with the random effects

used in Parent and LeSage (2012) by incorporating heteroskedasticity as in Mills and Parent (2014).

Although the SDPD model is highly flexible, the inclusion of the time series structure adds complexity

to the stationary condition. Parent and LeSage (2011) show that the stationary condition of the model

mutually depends on three parameters related to simultaneous spatial correlation, lagged serial correlation,

and lagged spatial correlation parameters. In this work, we refer to the stationary condition of the SDPD

model as the space-time stationary condition. Thus, the model is assumed to be the explicit relationship

among parameters under the space-time stationary condition. When we estimate the model, the ranges of

these parameters depend on the space-time condition.

With the sampling algorithm for the SDPD model, most studies conduct analyses using a random walk

Metropolis-Hastings (RW-MH) algorithm and single sampling related to spatial and serial correlation pa-

rameters. The RW-MH algorithm is an inefficient estimation method because the algorithm depends on the

previous sample value to draw the posterior sample from the proposed distribution. Moreover, prior studies

assume that these parameters have an implicit relationship under the space-time stationary condition. How-

ever, sampling individually correlated parameters causes a slow convergence (Liu 1994). Thus, the existing

method fails to converge in the time available in practice. While some studies on the sampling algorithm

for spatial models focus on only simultaneous spatial parameters, few studies examine the case of multiple

spatial and dynamic parameters. Therefore, it is necessary to accelerate the MCMC algorithm for the SDPD

model and to demonstrate the sampling efficiency or inefficiency to empirical researchers.

In this work, we propose a Taylor approximation and blocked Metropolis-Hastings (TaB-MH) algorithm

to accelerate convergence. This approach is widely used in econometric analysis, for instance, the stochastic

volatility model (Watanabe and Omori, 2004) and the dynamic stochastic general equilibrium model (Chib

and Ramamurthy, 2010) are popular. Our approach is based on Chib and Ramamurthy (2010) and joint

sampling parameters related to space and time correlations and considering the proposal distribution, which

mimics the target distribution using the Taylor expansion.

We illustrate the properties of both TaB-MH and RW-MH algorithm using a simulated data set given a

small sample and strong correlations in spatial and temporal dependence. From the results, we find that the

TaB-MH is the more efficient method in terms of inefficiency factors. Moreover, an empirical illustration

on a regional spillover in Japan also works better and with fewer simulations than the existing approach.

The remainder of this paper is organized as follows. Section 2 introduces the SDPD model and MCMC

methods. Section 3 shows the Monte Carlo experiments using simulated data and demonstrating applied

work using regional productivity in Japan. Finally, we provide concluding remarks.
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2 Econometric model and Bayesian inference

2.1 Spatial dynamic panel data model

We first introduce the spatial dynamic panel data model3 with heteroskedasticity among regions in Mills and

Parent (2014). Let yt define the n × 1 vector of observations at time t, and Xt denotes the n × k matrix of

exogenous variables for t = 1, . . . , T . The dynamic spatial lag model is defined as follows:

yt = ρWyt + ϕyt−1 + θWyt−1 + αιn + Xtβ + ηt, (1)

ηt = µ+ σϵt, ϵt ∼ N (0,Λ), Λ = diag(λ1, . . . , λn), (2)

where ρ captures the degree of simultaneous spatial interaction, the scaler ϕ and θ are reflected parameters

of the strength of the first order serial and spatial dependence. W denotes the weight matrix including

the geographic relationship among regions, and the components of the weight matrix are defined with the

row-standardized contiguity dummy4. ιn is the n× 1 vector of ones associated with the constant term α.

With respect to the vector of the constant term µ in the equation (2), the n× 1 vector µ is assumed to be

the random effect. Thus, µ is assumed to be the following normal distribution such as µ ∼ N (0, τ2) where

τ2 is the unknown parameter of variance. ϵt is assumed to be independent and identically distributed and

follows the normal distribution with mean zeros and variance In, which is n× n unit matrix. λi denotes the

auxiliary parameter for the heteroskedasticity of the error distribution across regions. As Mills and Parent

(2014) note, the extension of the model including the regional variance scaling parameter λi causes slow

convergence because of the identification problem among the variance σ2 and Λ. Thus, we assume that the

error term ϵt follows the standardized Student’s t-distribution. The variation scale of heteroskedasticity is

assumed to be independent and identically distributed and following the chi-squared distribution,

ν − 2

λi
∼ χ2(ν),

where ν represents an unknown parameter of the degree of freedom. Then, the error term follows the

standardized Student’s t-distribution; ν > 2 is assumed to satisfy a finite variance. A pre-sample y0 is

assumed to be an exogenous variable because the main purpose of this study is to examine the improvements

in sampling efficiency for the space-time parameters (ρ, ϕ, and θ).

Next, we discuss the stationary condition of the SDPD model. Allowing spatial interaction at both si-

3This work discusses the spatial autoregressive type of dynamic panel data models. Refer to the following references for other
types of models such as the spatial error model and spatial Durbin model in Parent and LeSage (2011) and Mills and Parent (2014),
respectively.

4As Stakhovych and Bijmolt (2009) recommend the contiguity dummy in their numerical experiments, we adopt the same
approach.
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multaneous, serial, and temporal dynamics, the stationary condition is more complex than the stationary

condition of the conventional dynamic panel data model. Parent and LeSage (2011, 2012) show the station-

ary conditions as follows:

S(ψ) =



ϕ+ (ρ+ θ)ϖmax < 1 (ρ+ θ ≥ 0)

ϕ+ (ρ+ θ)ϖmin < 1 (ρ+ θ < 0)

ϕ− (ρ+ θ)ϖmax > −1 (ρ− θ ≥ 0)

ϕ− (ρ+ θ)ϖmin > −1 (ρ− θ < 0)

(3)

where ψ = (ρ, ϕ, θ)′ and ϖmin (ϖmax) is the minimum (maximum) eigenvalue of W. It is obvious from the

above expression that the stationary condition of the SDPD model mutually depends on three parameters

such as simultaneous and lagged spatial dependences and serial clustering. Hereinafter, this condition is

called the space-time stationary condition. Thus, the space-time stationary constraints must draw parameters

ρ, ϕ, and θ consistent with the condition (3) to estimate the model.

To simplify the notations, let ϑ = (ψ, α, β, σ2, µ, τ2, λ, ν), λ = (λ1, . . . , λn), y = (y′1, . . . , y
′
T )

′,

y− = (y′0, . . . , y
′
T−1)

′, and X = (X′
1, . . . ,X

′
T )

′. Therefore, the log likelihood function is the following:

lnL (y|ϑ, y0,X,W) = −nT
2

ln(2π)− 1

2
ln |Ω|+ T

n∑
j=1

ln(1− ρϖj)−
1

2
e′Ω−1e, (4)

where e = {ιT ⊗ (In − ρW)}y − {ιT ⊗ (ϕIn + θW)}y− − ιnTα− Xβ, Ω = τ2(JT ⊗ In) + σ2(IT ⊗Λ) and

JT = ιT ι
′
T .

2.2 Bayesian analysis

2.2.1 Markov chain Monte Carlo method

Our estimation procedure relies on Bayesian inference, such as the MCMC method. Empirical studies using

the SDPD model are mostly based on a quasi-maximum likelihood (QML) estimation via the concentrated

log-likelihood approach (Yu et al., 2008; Su and Yang, 2015)5. The QML method depends on asymptotic

properties while the MCMC method does not. The MCMC evaluates the posterior distributions of the

parameters conditioned on the data. Moreover, for regional economic data, the number of time series is

small. Thus, it makes sense to estimate the SDPD model using the MCMC method.

Since we adopt Bayesian inference, we evaluate the posterior distribution given the prior distribution

5As an alternative approach, Lee and Yu (2014) propose the generalized method of moments.
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and the likelihood. The joint posterior distribution is given by

p(ϑ|y, y0,X,W) ∝ p(ϑ)L (y|ϑ, y0,X,W), (5)

where p(ϑ) denotes the joint prior distribution of the parameters. As the dimension of the parameter set

is high to directly evaluate the joint posterior distribution, we simulate the parameter from the full condi-

tional distribution. Thus, we must specify the joint prior distribution. The joint prior distribution can be

decomposed as follows:

p(ϑ) = p(α)p(β)p(σ2)p(µ|τ2)p(τ2)p(ψ)p(λ|ν)p(ν).

We assume that the prior distributions for the parameters (α, β, τ2, σ2, and ψ, ν) are all independent.

Since the joint posterior distribution is given by (5), we can now adopt the MCMC method. This approach

must use multiple iterations to evaluate the marginal posterior distribution in the joint posterior distribution.

It is analytically difficult to evaluate the marginal posterior distribution if the joint posterior distribution is

complicated. Then, we draw the parameters from the full conditional distributions that use Markov sampling

and Monte Carlo integration to approximate the full conditional distribution. For the SDPD model, we

implement the MCMC algorithm, which involves the following steps

0. Initial ϑ

1. Generate β from p(β|ϑ−β, y, y0,X,W)

2. Generate σ2 from p(σ2|ϑ−σ2 , y, y0,X,W)

3. Generate µ from p(µ|ϑ−µ, y, y0,X,W)

4. Generate τ2 from p(τ2|ϑ−τ2 , y, y0,X,W)

5. Generate α from p(α|ϑ−α, y, y0,X,W)

6. Generate ψ from p(ψ|ϑ−ψ, y, y0,X,W)

7. Generate λ from p(λ|ϑ−λ, y, y0,X,W)

8. Generate ν from p(ν|ϑ−ν , y, y0,X,W)

9. Repeat 1. to 8.

where ϑ−β denotes the parameters of ϑ excluding β. This strategy of sequentially drawing from the full

conditional posterior distributions is called Gibbs sampling. When the number of iterations is large, the

drawing from the full conditionals will yield a posterior sample sequence that can be averaged to produce

parameter estimates in the same manner as Monte Carlo integration (see Gilks et al., 1996).
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The Gibbs sampling approach is a powerful tool that is broadly used in econometric models. However,

in the case of the SDPD model involving an explicit relationship among parameters such as the space-

time stationary condition, the critical question is how to draw the parameters ψ in step 6. To estimate

these parameters, the RW-MH algorithm, which generates a single parameter at a time, is widely applied.

This method produces a highly correlated and also between parameters sample sequence and yields low

convergence to the target marginal distribution. Thus, it is necessary to repeat the sampling for a large

number of iterations to obtain independent posterior samples. In this work, we propose a more efficient

estimation method than the existing approach and explain the sampling algorithm for the SDPD model in

the following subsections.

2.2.2 Random walk Metropolis-Hastings algorithm

The RW-MH algorithm has been widely used in empirical analysis. In this work, we illustrate a sampling

scheme of ρ as in Parent and LeSage (2012). The authors assumed the following as the joint prior distribution

of the parameter ψ:

p(ψ) = p(ρ)p(θ|ρ)p(ϕ|ρ, θ).

Moreover, the authors assumed the individual prior distribution (ρ, ϕ, θ) as follows:

ρ ∼ U(−1, 1), θ|ρ ∼ U(−1 + |ρ|, 1 + |ρ|), ϕ|ρ, θ ∼ U(−1 + |ρ− θ|, 1 + |ρ+ θ|)

The full conditional distribution of ρ is as follows:

p(ρ|ϑ−ρ, y, y0,X,W) ∝ |In − ρW| exp
(
−1

2
e′Ω−1e

)
. (6)

It is difficult to directly draw the parameter. Thus, we employ the MH algorithm with the random walk

chain. The proposal value is drawn from the following distribution,

ρnew ∼ N (ρold, s
2
ρ),

where s2ρ denotes the tuning parameter. In the numerical example below, we select the tuning parameter

such that the acceptance rate lies between 0.4 and 0.6 (see Holloway et al., 2002). Next, we evaluate the
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acceptance probability

Pr(ρold , ρnew ) = min

[
p(ρnew |ϑ−ρ, y, y0,X,W)

p(ρold |ϑ−ρ, y, y0,X,W)
, 1

]
,

and finally set ρ = ρnew with probability Pr(ρold, ρnew); otherwise, ρ = ρold. The proposal value of ρ is

not truncated to satisfy the space-time stationary condition S(ψ). Thus, if the proposed value of ρ is not

within the condition, the conditional posterior is zero, and the proposal value is rejected with probability

one. Pace and LeSage (2012) apply the RW-MH method to the sampling of other parameters.

2.2.3 Tailored approximation blocking MH algorithm

As noted above, the RW-MH, which generates a single parameter at a time, produces a highly correlated

sample sequence. Moreover, the SDPD model has complicated interdependence in parameters arising from

the space-time stationary condition. Liu (1994) suggests that to lump the high correlated parameters together

improves the sample mixing. Thus, the solutions for estimating high correlated parameters are to jointly

sample these parameters at once and approximate the full conditional distribution of the parameters ψ.

Thus, we develop an estimation approach by incorporating a Tailored approximation and blocking MH

algorithm (hereafter, we call this TaB-MH). The approximation and blocked sampling approach is applied

in econometric models such as the stochastic volatility model (Watanabe and Omori, 2004) and the dynamic

stochastic general equilibrium (DSGE) model (Chib and Ramamurthy, 2010). Our estimation algorithm is

based on Chib and Ramamurthy (2010)6.

At first, we assume the following as the prior distribution for the parameter set ψ

p(ψ) ∼ N (ψ0,Σψ0)I[S(ψ)]

where I[·] is an indicator function that takes one if the condition in parentheses is satisfied and zero other-

wise. Let f(ψ) denote the full conditional distribution of ψ with

f(ψ|ϑ−ψ, y, y0,X,W) ∝ L (y|ϑ, y0,X,W)p(ψ). (7)

We use the MH algorithm based on a normal approximation of the posterior density because we must

choose the proposal density that mimics the full conditional distribution. Applying the second order Taylor

expansion to the logarithm of the density (7) around the mode ψ = ψ∗, we have an approximate normal

6The authors proposed randomized blocking for parameters because the dimension of parameters in the DSGE model is large.
In the case of the SDPD model, we propose an approach without randomizing parameters as we should block the three parameters.
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density as follows:

ln f(ψ∗|ϑ−ψ, y, y0,X,W) ≈ ln f(ψ∗|ϑ−ψ, y, y0,X,W) + (ψ − ψ∗)′a +
1

2
(ψ − ψ∗)′B(ψ − ψ∗)

= ln g(ψ∗|ϑ−ψ, y, y0,X,W), (8)

where

a =
∂ log f(ψ|ϑ−ψ, y, y0,X,W)

∂ψ

∣∣∣∣
ψ=ψ∗

, B =
∂2 log f(ψ|ϑ−ψ, y, y0,X,W)

∂ψ∂ψ′

∣∣∣∣
ψ=ψ∗

,

denoting the numerical gradient vector and Hessian matrix7 of f(ψ∗|ϑ−ψ, y, y0,X,W). The mode ψ∗ can be

obtained by selecting in a way that maximizes the conditional posterior density f(ψ|ϑ−ψ, y, y0,X,W).

Next, we generate a candidate from the normal distribution,

ψnew ∼ N (ψ̂,Σψ),

where ψ̂ = ψ∗ +Σ−1
ψ a and Σψ = (−B)−1. Finally, we evaluate the acceptance probability

Pr(ψold, ψnew) = min

[
f(ψnew|ϑ−ψ, y, y0,X,W)g(ψold|ϑ−ψ, y, y0,X,W)

g(ψnew|ϑ−ψ, y, y0,X,W)f(ψold|ϑ−ψ, y, y0,X,W)
, 1

]
,

and set ψ = ψnew with probability Pr(ψold, ψnew); otherwise, ψ = ψold. When the S(ψ) from the proposed

values of ψ does not satisfy the space-time stationary condition, the conditional posterior is zero, and the

proposal values are rejected with probability one.

3 Illustrative examples

3.1 Numerical experiment

We illustrate the properties of sampling approaches using simulated data. The desirable properties for sam-

pling methods in MCMC are efficiency and well mixing, which yield fast convergence. Following previous

literature (Chib and Ramamurthy, 2010; Ohtsuka and Kakamu, 2015), we also compare the efficiency of

sampling methods using an inefficiency factor. The inefficiency factor is defined as 1+ 2
∑L

s=1 rs where rs

is the sample autocorrelation at lag s calculated from the sampled values. The inefficiency factor is used to

measure how well the chain mixes and is the ratio of the numerical variance of the sample posterior mean

to the variance of the sample mean from the hypothetical uncorrelated draws (Chib, 2001).

7Chib and Ramamurthy (2010) note that it is possible that the negative Hessian is not guaranteed. In this case, we should use
the modified Cholesky decomposition in Nocedal and Wright (2000).
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We now explain the data generation process. The data are simulated using the SDPD model presented

in Section 2.1. First, we construct the weight matrix W as follows:

i. Generate dij for (i > j) from the Bernoulli distribution with a 0.4 probability of success.

ii. Set dij = dji for i ̸= j and dij = 0 for i = j.

iii. Compute wij = dij/
∑n

j=1 dij for all i and j.

Next, for the independent variables xit = (x1it, x2it, x3it), we take the standard normal variates and set the

Xt, which are n × 3 covariate matrices. With regard to the parameters, we implement the same settings in

Parent and LeSage (2012). The setting of the space-time parameters is (ρ, ϕ, θ) = (0.9, 0.9,−0.85), which

corresponds to a case of strong interaction in both spatial and serial parameters. Moreover, we set T = 5 to

explore small sample properties. The other parameters are set to be β′ = (β1, β2, β3) = (2, 2, 2), α = 2; µ

generates from N (0, τ2In) with τ2 = 0.05 and ν = 6. A pre-sample y0 draws from the initial distribution

N (αιn, τ
2In + σ2Λ).

The hyper-parameters of the prior distribution are the following

β0 = 03, Σβ0 = 10I3, α0 = 0.0, σ2α0
= 10, δτ0 = 0.05, sτ0 = 2.0, δσ0 = 0.05, sσ0 = 2.0,

υ0 = 03, Συ0 = 10I3, δν0 = 6.0, sν0 = 1.0.

In the numerical experiment using the RW-MH, we set the tuning parameters s2ρ = s2ϕ = s2θ = 1.0. For each

simulation, we use 10, 000 iterations for the posterior sample after a burn-in period of 5, 000 iterations. All

the results in this paper were calculated using the Ox version 6.2 (see Doornik, 2006).

Table 1 summarizes the estimated results of the TaB-MH and RW-MH algorithm where Mean, SD,

95%CI, CD, and IF represent the posterior mean, standard deviation, 95% credible interval, Geweke’s (1992)

convergence diagnostics8, and inefficiency factor, respectively. From Table 1, we first observed that all

parameters include true values in the 95% credible intervals. However, some values of the CD in the RW-

MH algorithm are less than 0.01 against the values in the TaB-MH. These results imply that the RW-MH

method does not work well in the parameters of the SDPD model under this experiment. Regarding the

efficiency of parameter sampling corresponding to the space and time correlations, the inefficiency factors

of the RW-MH are 10 times more than those of the TaB-MH algorithm. This implies that the RW-MH

method takes a greater number of simulations and more computation time than our algorithm.

8The convergence diagnostics represent the p-value based on the test statistic on the difference between two sample means
(ı.e., dividing all the generated random draws into three parts; we compute two sample means from the first 20% and last 50% of
the random draws) where the test statistic is asymptotically distributed as standard normal random variables. We confirm that the
random draws generated by the MCMC do not converge to the random draws generated from the target distribution when the CD
is less than 0.01 (see Geweke, 1992, for a detailed discussion of the CD).
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Figure 1 shows the sample draws from the posterior distribution and their autocorrelation functions

(ACFs) to illustrate the differences in the mixing of the two ways. The top panel corresponding to the

draws using the RW-MH algorithm and the bottom panel corresponds to the draws using the TaB-MH

algorithm. From the top panel of the figure, it seems that the posterior samples using the RW-MH include

persistent autocorrelations that decay slowly. In comparison, the TaB-MH algorithm performs well with

autocorrelations that decay to zero rapidly. Thus, we also see that our algorithm has faster convergence than

the RW-MH algorithm.

Finally, we examine the correlations among drawing parameters and discuss the reason why the conver-

gence of the posterior samples is slow. Figure 2 shows the scatter plots of drawing from the full conditional

distribution of the parameters associated with the space-time stationary condition using the TaB-MH ap-

proach. From the figure, we see that the negative correlation between ρ and θ is higher than with the other

approaches. Even if the joint sampling approach is used, there seems to be a high correlation among the

parameters. Then, it is not appropriate to separately sample the parameters so that the dependence be-

tween these parameters slows the convergence of the MCMC chain. Moreover, the SDPD model using the

TaB-MH works with fewer simulations than the experiments in Parent and LeSage (2012)9.

Therefore, in the case of the SDPD model with an a priori relationship among parameters, we conclude

that the approach based on the blocking and approximating posterior distribution is superior to the RW-MH

algorithm from the viewpoint of efficiency.

3.2 Application to regional spillovers in Japan

In this empirical illustration, we apply the SDPD model and the TaB-MH algorithm to estimate spillovers

of regional production in Japan. There are some empirical studies on Japanese regional data, for example,

manufacturing productivity (Kakamu et al., 2012), prefectural productivity (Ohtsuka, 2015), and the effect

of fiscal policy (Funashima and Ohtsuka, 2019). These studies show that it is important to consider the

spatial model when analyzing the regional data set in Japan.

We rely on a growth regression as in Parent and LeSage (2012). Following Parent and LeSage (2012),

we consider a Cobb-Douglas production function that depends on physical capital, human capital, and labor

force. The empirical specification of the prefectural growth ẏt is described by the following:

ẏt = ρWẏt + ρẏt−1 + θWẏt−1 + ιnα+ βkẋk,t + βlẋl,t + βhẋh,t + ηt,

ηt = µ+ σϵt, ϵt ∼ N (0,Λ)

9Their simulations were that the burn-in period was 10, 000, and the total period was 20, 000.
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where ẋk,t, ẋl,t, and ẋh,t denote the growth of physical capital, labor, and human capital, respectively. In the

empirical analysis, we measure ẏit and ẋl,t using the prefectural product and the total number of workers

in the prefecture. For the measurement of physical capital stock, we use a proxy using a prefectural gross

capital formation10. As in Parent and LeSage (2012), we substitute a four-year enrollment per college-age

population for human capital. Our data set is composed of annual observations of the 47 prefectures in

Japan from financial year 2007 to 2015. We obtain all data except human capital from the Annual Report on

Prefectural Accounts. These data are based on the System of National Accounts 2008 (SNA2008). These

data can be retrieved from the website of Japan’s Cabinet Office. The four-year enrollment per college-age

population is calculated using the School Basic Survey from the Ministry of Education, Culture, Sports,

Science and Technology.

Regarding the weight matrix, we use the contiguity dummy variables. Excluding the Okinawa pre-

fecture, Japan is composed of four major islands: Hokkaido, Honshu, Shikoku, and Kyushu. Although

these four islands are geographically separated, we assume that they are connected by trains and roads (see

Kakamu et al., 2010)11. The hyper-parameters of the prior distribution are the following

β0 = 03, Σβ0 = 10I3, α0 = 0.0, σ2α0
= 10, δτ0 = 0.05, sτ0 = 2.0, δσ0 = 0.05, sσ0 = 2.0,

υ0 = 03, Συ0 = 10I3, δν0 = 10.0, sν0 = 1.0.

We perform the MCMC procedures in generating 6, 000 draws in a single sample path and discard the

first 3, 000 as the initial burn-in. Table 2 summarizes the estimated results using two methods. From the

CD statistics, the p-values of all parameters are greater than 0.01. These results show the convergence of

all parameters. First, we evaluate the sampling efficiency of the RW-MH and the TaB-MH. Compared with

the inefficiency factors of space and time parameters, the values by the TaB-MH algorithm are smaller than

those by the RW-MH. Hereafter, we explain the results using the TaB-MH.

Focusing on the estimated results of the spatial and serial dependence parameters, we found that the pa-

rameters except θ do not include zero in the 95% credible intervals. Since the posterior mean of the spatial

dependence is positive, this implies that the prefectural growth rates of productivity are similar to neighbor-

ing areas. On the other hand, the posterior mean of serial correlation is negative. Negative autocorrelation

is not generally found in economic data. However, our results resemble the literature using growth rates of

Japanese macro-economic data series (Ohtsuka, 2018). When the sum of the posterior means ρ + ϕ + θ is

10Gross capital formation is measured by total gross fixed capital formation, which is composed of resident producers’ in-
vestments, deducting disposals from fixed assets during a given period, changes in inventories, and acquisitions less disposals of
valuables for a prefectural economy. Capital stock, which is widely used in economic theory, is not published in Japan.

11For example, we consider Hokkaido to be contiguous with Honshu by the Seikan Railway Tunnel. Honshu and Shikoku are
considered contiguous by the Awaji and Seto Bridges, and Kyushu is considered contiguous with Honshu by the Kanmon Tunnel
and Bridge.

12



within unity, and the value of ϕ − (ρ − θ) is more than negative one, we confirm that the process satisfies

the space-time stationary condition.

The posterior means of βk, βl, and βh are 0.102, 0.259, and 0.024, respectively. The credible intervals

except βh do not contain zero. Thus, we find that the effect of labor on the growth rate of production is larger

than the effect of labor on the growth rate of physical capital. Regarding human capital, the posterior mean

of βh using Japanese data is different to mean in the results of US data in Parent and LeSage (2012). The

assumption that an area with a higher enrollment rate has skilled workers is not applicable to Japanese data.

Finally, the degree of freedom ν is around 10 and shows that the errors deviate substantially from normal,

supporting our flexible modeling for heteroskedasticity across the regions of the error term.

4 Conclusion

Although the SDPD model is flexible enough to estimate the structure of spatial and temporal dependencies,

there are few Bayesian estimations developed for the model. For sampling spatiotemporal parameters,

empirical analyses frequently use the existing approach with individual and RM-MH algorithms. Since a

single sampling for correlated parameters due to the space-time stationary condition and the RW-MH lead

to slow convergence and a bad mixing of posterior simulations, researchers require an enormous number of

iterations. Moreover, this computational cost is a serious problem when handling the large set of dimensional

data. Thus, this work proposes an efficient MCMC algorithm for the SDPD model. To sample parameters

that relate to the space and serial correlation simultaneously, we constructed a proposal density function for

the MH algorithm based on the approximate normal distribution using a Taylor expansion of the logarithm

of the target posterior density. We compared the two algorithms using simulated data and real data. With

respect to the mixing and the efficiency of the MCMC, we found that blocked sampling the three parameters

on the space-time stationary condition is preferable to the previous sampling approach.

Finally, there are some remaining issues. In this study, we focused on the approach based on blocking

and the approximation of a target distribution. Recently, various approaches have been proposed, such as the

Hamiltonian Monte Carlo (Wolf et al., 2018) approach for spatial econometric models and the variational

Bayesian inference (Gefang et al., 2019) for large data analysis. This subject will be discussed in our future

research. However, it is important to show how the sampling methods are efficient or inefficient We consider

that, in this respect, our experiment represents a benchmark in applied works.
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A Sampling procedure for the parameters except space-time correlation ψ

First, we assume the following prior distributions,

β ∼ N (β0,Σβ0), α ∼ N (α0, σ
2
α0
), τ2 ∼ IG(δτ0/2, sτ0/2),

σ2 ∼ IG(δσ0/2, sσ0/2), ν ∼ G(δν0 , sν0)I[ν > 2]

where G denotes a gamma distribution, and we assume the truncated gamma distribution to satisfy a finite

variance.

Let yβ = {ιT ⊗ (In − ρW)}y − αιnT . The full conditional distribution of β and σ2 are given by

β|ϑ−β, y, y0,X,W ∼ N (µ̂β, Σ̂β), σ2|ϑ−σ2 , y, y0,X,W ∼ IG(δ̂σ/2, ŝσ/2),

where µ̂β = Σ̂β(X′Ω−1yβ+Σ−1
β0
β0), Σ̂β = (X′Ω−1X+Σ−1

β0
)−1, δ̂σ = e′(IT ⊗Λ)e+ δ̂σ0 and ŝσ = nT+sσ0 .

Next, we focus on sampling procedures for µ and τ2. Define µi and xi for i = 1, . . . , n as i the

component of the vector µ and Xi, respectively. Let yi = (yi1, . . . , yiT )
′ and Xi = (x′i1, . . . , x

′
iT )

′. The

model (1) and (2) becomes

ȳi = µiιT + σϵi, ϵi ∼ N (0, λiIT )

where ȳi = (ȳi1, . . . , ȳiT )
′, ȳit = yit − ρ

∑n
j=1wijyjt − ϕyi,t−1 − θ

∑n
j=1wijyj,t−1 − α − xitβ, and

ϵi = (ϵi1, . . . , ϵiT )
′. The full conditional distribution of µi and τ2 are written as

µi|ϑ−µi , y, y0,X,W ∼ N (µ̂i, σ̂
2
µi), τ2|ϑ−τ2 ∼ IG(δ̂τ/2, ŝτ/2),

where µ̂i = σ̂2µi(σ
−2λ−1

i ȳ′iιT ) and σ̂2µi = (σ−2λ−1
i T + τ−2)−1, δ̂τ = µ′µ+ δτ0 and ŝτ = n+ sτ0 .

For the constant term α, let yα = {ιT ⊗ (In − ρW)}y − {ιT ⊗ (ϕIn + θW)}y− − Xβ, and the full

conditional distribution of α is given as

α|ϑ−α, y0, y,W,X ∼ N (α̂, σ̂2α),

where α̂ = σ̂2α(ι
′
nTΩ

−1yα + σ−2
α0
α0) and σ̂2α = (ι′nTΩ

−1ιnT + σ−2
α0

)−1.

For the parameters of heteroskedasticity, we use the Gibbs sampler and acceptance rejection-MH (AR-

MH) to generate λ and ν, respectively. Define ei = (ei1, . . . , eiT )
′ and eit = yit−ρ

∑n
j=1wijyjt−ϕyi,t−1−

θ
∑n

j=1wijyj,t−1 − α − µi − xitβ. Conditional on ν, the λ̂i = (e′iei + ν − 2)/λi follows an independent
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χ2(ν + T ) distribution. Hence, λ∗i is sampled from χ2(ν + T ) distribution. We calculate λi using λ∗i and

λ̂i. Finally, the log of the full conditional distribution of ν is given by

ln p(ν|ϑ−ν , y0, y,W,X) ∝
Tν

2
ln

(
ν − 2

2

)
− T ln Γ

(ν
2

)
− ξν + (δν0) ln(ν),

where

ξ =
1

2

n∑
i=1

{
ln (λi) +

1

λi

}
+ sν0 .

It is difficult to generate the parameter from the distribution. Thus, we employ the AR-MH algorithm

extended by Watanabe (2001). This algorithm generates the parameter from a proposal density by applying

the second-order Taylor expansion to the log of p(ν|ϑ−ν , y0, y,W,X) and evaluating the sampled parameter

with AR and MH steps. See the detail of AR-MH algorithm for the degree of freedom in Watanabe (2001).
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Table 1: Posterior summary of the simulated data set ( T = 5, n = 50)
Parameter True value Mean SD 95%CI CD IF

RW-MH algorithm
ρ 0.9 0.892 0.01 [0.872, 0.913] 0.00 121.66
ϕ 0.9 0.886 0.01 [0.864, 0.911] 0.00 220.25
θ −0.85 −0.828 0.02 [−0.859,−0.803] 0.01 241.65
σ2 1.0 1.030 0.16 [0.748, 1.395] 0.52 5.00
τ2 0.05 0.043 0.04 [0.008, 0.138] 0.69 25.17
α 2.0 2.037 0.30 [1.444, 2.652] 0.04 49.81
β1 2.0 2.043 0.06 [1.939, 2.153] 0.37 3.44
β2 2.0 1.935 0.06 [1.809, 2.054] 0.21 4.61
β3 2.0 2.045 0.06 [1.936, 2.159] 0.27 3.20
ν 6.0 5.049 0.93 [4.034, 7.436] 0.08 16.92

TaB-MH algorithm
ρ 0.9 0.892 0.01 [0.863, 0.918] 0.72 11.93
ϕ 0.9 0.893 0.01 [0.867, 0.919] 0.41 1.68
θ −0.85 −0.836 0.02 [−0.869,−0.802] 0.32 1.33
σ2 1.0 1.039 0.17 [0.755, 1.404] 0.90 3.62
τ2 0.05 0.047 0.04 [0.008, 0.143] 0.62 22.14
α 2.0 2.083 0.29 [1.528, 2.730] 0.55 29.63
β1 2.0 2.046 0.06 [1.936, 2.155] 0.88 2.04
β2 2.0 1.939 0.06 [1.809, 2.063] 0.56 1.91
β3 2.0 2.042 0.06 [1.929, 2.155] 0.01 3.17
ν 6.0 4.987 0.88 [4.033, 7.197] 0.46 4.28

Note: CI, CD, and IF are the credible interval, the p-value of the convergence diagnostic (CD) test
in Geweke (1992), and the inefficiency factor, respectively. The acceptance rates are as follows:
around 50% in the RW-MH, and around 99% in the TaB-MH.
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Table 2: Estimation results of the empirical data set
Parameter Mean SD 95%CI CD IF

RW-MH algorithm
ρ 0.518 0.04 [0.433, 0.602] 0.12 7.12
ϕ −0.148 0.05 [−0.254,−0.050] 0.45 10.07
θ 0.044 0.06 [−0.078, 0.177] 0.75 11.80
σ2 5.424 0.60 [4.389, 6.740] 0.89 9.48
τ2 0.032 0.03 [0.006, 0.113] 0.74 22.69
α 0.107 0.12 [−0.141, 0.341] 0.66 1.43
β0 0.102 0.02 [0.071, 0.135] 0.09 5.07
β1 0.261 0.11 [0.044, 0.470] 0.54 1.06
β2 0.025 0.03 [−0.026, 0.076] 0.92 1.03
ν 11.81 3.66 [6.231, 20.290] 0.59 12.90

TaB-MH algorithm
ρ 0.520 0.04 [0.437, 0.605] 0.27 2.73
ϕ −0.142 0.06 [−0.260,−0.028] 0.78 1.02
θ 0.039 0.07 [−0.091, 0.171] 0.92 1.51
σ2 5.386 0.62 [4.361, 6.765] 0.56 3.89
τ2 0.037 0.03 [0.007, 0.120] 0.12 17.23
α 0.111 0.13 [−0.138, 0.363] 0.58 1.18
βk 0.102 0.02 [0.071, 0.134] 0.40 1.98
βl 0.259 0.11 [0.041, 0.475] 0.63 1.02
βh 0.024 0.03 [−0.028, 0.076] 0.36 1.22
ν 11.95 3.62 [6.068, 20.00] 0.73 7.74

Note: CI, CD, and IF are the credible interval, the p-value of the convergence diag-
nostic (CD) test in Geweke (1992), and the inefficiency factor, respectively.
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Figure 1: The simulation results of the autocorrelation and posterior sample

Note: The time-series plots of draws from the posterior and corresponding auto-correlation functions using the RW-MH
(top panel) and the TaR-MH (bottom panel).
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Figure 2: Scatter plots of space-time parameters
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