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Abstract

A monetary policy framework describing how to cope with a financial crisis

might alleviate a recession, but might also result in subsequent secular stagnation.

Based on an empirical New Keynesian model with financial uncertainty, this study

investigates how monetary policy can avoid sluggish economic recovery in response

to financial shocks. The results show that a protracted sluggish response of an

output gap is triggered by inflation targeting, without taking into account interest

rate variations. In such a policy, the uncertainty causes additional sluggish behavior

after the sharp reduction in the output gap. In contrast, in a speed limit policy, the

output gap recovers rapidly, regardless of the central bank’s approach to interest

rate variations, and the uncertainty mitigates reductions in the output gap. Finally,

the results are robust to checks under several alternative settings.
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1 Introduction

To counteract the aftermath of the global financial crisis and the Great Recession in the

late 2000s, the Federal Reserve in the United States promptly cut the federal funds rate

to nearly zero, and subsequently undertook unconventional monetary policies. However,

despite the prompt and bold policy measures, the United States has experienced secular

stagnation since the crisis. As shown in Figure 1, the U.S. economy will take roughly 10

years to fill the large negative output gap stemming from the crisis.1 In recent influential

works, Summers (2014, 2015) argues that the negative natural rate of interest and the

resultant insufficient effects of monetary policies under a zero nominal lower bound are

related to the recent secular stagnation.

[Insert Figure 1 around here]

Importantly, slow recoveries from financial crises are not uncommon. According to

Reinhart and Rogoff (2014), who studied approximately 100 systemic banking crises since

the latter half of the 19th century, protracted sluggish recovery is observed in most of

the crises. It is highly unlikely that all historical recoveries from financial crises can be

explained adequately by a negative natural rate of interest and zero lower bound effects.

In this study, we provide several complementary explanations for the origins of secular

stagnation. That is, rather than focusing on the inadequacy of monetary policy with a

zero nominal lower bound, we focus on side effects and how to address a financial crisis

and subsequent recessions. We argue that while recessions are regarded as temporary

fluctuations in modern macroeconomics, they can be prolonged, depending on the way in

which a central bank manages the situation.

It is possible that a protracted sluggish output gap response to a financial shock is

highly relevant to policymakers’ targets. The literature on optimal monetary policy in

dynamic stochastic general equilibrium frameworks provides several candidates as appro-

priate monetary policy objectives. These include inflation targeting (Svensson, 1997) and

speed limit policies to stabilize inflation and changes in the output gap (Walsh, 2003).

However, little is known about the difference in performance between inflation targeting

and speed limit policies when financial shocks occur. Furthermore, whether or not policy-

makers take changes in interest rates into account is crucial to monetary policy behavior.

On the one hand, in a financial crisis, it is possible to justify stabilizing inflation and

the output gap, without worrying about variations in policy interest rates. On the other

1Note that the potential output has been revised downward since the Great Recession, as pointed out
by Summers (2014, 2016). While beyond the scope of this study, an output gap contraction is related to
a decline in potential output and a recovery in demand.
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hand, policy interest rates need to be smoothed, with moderate cuts, especially to avoid

facing a zero lower bound.

In addition, when evaluating the macroeconomic dynamics of financial shocks, it seems

essential to consider the effects of uncertainty. Amid a financial crisis, policymakers

recognize that credit and financial markets are disrupted and private economic activities

change structurally. However, they tend to expect that the crisis will soon be over,

market disruption will end, and the economy will return to normal. Importantly, history

shows that crises can recur (e.g., Reinhart and Rogoff, 2014). Hence, it is highly likely

that normal and crisis periods will be repeated, and central banks reflect such repeated

regime-switching in their behavior.

Motivated by the aforementioned studies, this study has two objectives, aimed at

enriching our knowledge on secular stagnation. First, we attempt to clarify which targets

policymakers should adopt to prevent an output gap recovery from becoming protracted

in response to a financial shock. As such, we compare inflation targeting and speed limit

policies, both with and without being concerned about interest rate variations. Second,

while comparing these monetary policy objectives, we attempt to quantify the effects

of financial uncertainty. As a result, we aim to identify which objectives show robust

performance in the face of uncertainty.

To achieve these objectives, we employ the Markov jump-linear-quadratic approach

developed by Svensson and Williams (2007), among others. This framework allows us to

examine how key macroeconomic variables fluctuate under uncertainty for various central

bank objectives. Specifically, our analysis builds on the work of Williams (2012), who

applies the same approach to the effects of financial uncertainty on optimal monetary

policies. However, the original study focuses only on inflation targeting with interest

rate smoothing. Following Williams (2012), we use an empirical New Keynesian model

with financial uncertainty to examine which central bank objectives can lead to a rapid

recovery from a financial crisis.

Our main findings are summarized as follows. In the case of inflation targeting, we

find that a negative output gap response to a financial shock becomes protracted unless

the central bank strives to stabilize interest rate variations. In such a policy, uncertainty

causes sluggish behavior after the sharp reduction in the output gap. Unlike the case of

inflation targeting, a recovery can be attained within a relatively short period using speed

limit policies. Moreover, in a speed limit policy, the rapid recovery is insensitive to the

central bank’s approach to interest rate variations, and reductions in the output gap are

mitigated by the uncertainty. In other words, a speed limit policy outperforms inflation

targeting by avoiding secular stagnation after a financial crisis. In summary, targeting

frameworks and financial uncertainty have greater implications for secular stagnation than

is currently believed to be the case.
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1.1 Related literature

There is increasing concern about the slow recovery following the Great Recession. Recent

studies on secular stagnation have provided several explanations for this slow recovery.

One prominent explanation for the cause of such stagnation is a negative natural rate of

interest and the limiting effect on monetary policy of a zero lower bound, as argued by

Summers (2014, 2015). While Summers’ argument is not based on rigorous theoretical

models, Barsky et al. (2014) discuss the relationship between the natural rate of interest

rate and monetary policy using a DSGE model.2 Eggertsson et al. (2017) provide a

quantitative life cycle model to characterize secular stagnation. In an empirical study,

Albonico et al. (2017) find that the zero lower bound effect has caused jobless recovery

since the Great Recession.3

Moreover, there is wide-ranging debate among researchers over the cause of secular

stagnation. For example, Taylor (2014) argues that it is the result of various policies, such

as regulatory policies, bailouts, discretionary fiscal policy, and monetary policy. Lo and

Rogoff (2015) discuss the issue from several viewpoints, including innovation, demograph-

ics, policy uncertainty, and debt overhang. Apergis (2017) explores 127 global economies

and presents evidence in favor of macroprudential policies in order for monetary policy

to be effective. From a theoretical perspective, Fajgelbaum et al. (2017) demonstrate

that an endogenous uncertainty mechanism can prolong recessions and account for the

features of the Great Recession. Our study examines how a monetary policy framework

can be used to cope with financial shocks and the effects of financial uncertainty.

In terms of the modeling framework, as already mentioned, this study is closest to

that of Williams (2012), who finds that the effect of financial uncertainty is negligible.4

However, he only analyzes a parameter setting of inflation targeting with interest rate

smoothing, disregarding speed limit policies, which outperform other monetary policy

frameworks in some settings (e.g., Walsh, 2003; Yetman, 2006; Blake, 2012). Furthermore,

the recent renewed interest in secular stagnation is not focused. Hence, our research

questions have yet to be answered in the literature.

There exists a strand of literature that investigates monetary policy under uncertainty.

Here, relevant works include those of Kimura and Kurozumi (2007), Tillmann (2009), and

Kurozumi (2010). Many studies deal with the uncertainty by using Markov-switching

models (e.g., Zampolli, 2006; Davig and Leeper, 2007; Farmer et al., 2009, 2011). Our

investigation utilizes the Markov jump-linear-quadratic approach to solve the model. The

2See also Benigno and Fornaro (forthcoming), who present a Keynesian growth model in which a
stagnation trap arises and full employment cannot be attained by monetary policy.

3Albonico et al. (2017) also analyze the role of fiscal policies in the Great Recession, focusing on
Non-Ricardian households, and find that fiscal policies have little effect.

4Caglayan et al. (2017) show that financial deepening contributes to more effective monetary policy
in recessions.
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approach was initially proposed by Svensson and Williams (2007), and has subsequently

been applied to modeling various types of uncertainty (e.g., Svensson and Williams, 2008;

Williams, 2012; Flaminia and Milas, 2015).

2 The analytical framework

In this section we briefly outline our analytical framework, building on the work of

Williams (2012), with additional consideration of monetary policy targets.

2.1 The model

Consider a New Keynesian framework with financial uncertainty, as in Williams (2012), in

which there are private sectors and a central bank. The model is based on a combination

of the studies of Lindé (2005) and Cúrdia and Woodford (2009). In addition, we extend

the standard New Keynesian model to include credit market frictions.

To represent financial uncertainty, we suppose two regimes. Here, jt is a dummy

variable for period t that takes the value one in a normal regime and the value two in

a financial crisis regime. Furthermore, regime jt is assumed to follow a Markov process

with the following 2× 2 transition matrix:

P =

[
Prob(jt+1 = 1|jt = 1) 1− Prob(jt+1 = 1|jt = 1)

1− Prob(jt+1 = 2|jt = 2) Prob(jt+1 = 2|jt = 2)

]
. (1)

With regard to the dynamics of the private sector, a New Keynesian Phillips curve and

a New Keynesian IS equation are used. These include credit market frictions, backward-

components of the inflation rate πt, and the output gap yt:

πt = ωfjtEtπt+1 + (1− ωfjt)πt−1 + γjtyt + ξjtΩt + cπjtεπt, (2)

yt = βfjtEtyt+1 + (1− βfjt) [βyjtyt−1 + (1− βyjt)yt−2]− βrjt(it − Etπt+1) (3)

+θjtΩt + ϕjtωt + cyjtεyt,

where Et is the mathematical conditional expectation based on information available in

period t, it is the nominal interest rate, and επt and εyt are mutually uncorrelated standard

normal random shocks, such that[
επt

εyt

]
∼ i.i.d.N(02×1, I2). (4)

There are two key factors in this model: the marginal utility gap Ωt and the spread
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interest rate ωt between borrowers and savers. Note that the model of the normal regime

is nested in the model of the financial crisis regime, ξ1 = θ1 = ϕ1 = 0. In other words, in

a normal regime, the fourth term on the right-hand side of (2) and the fourth and fifth

terms on the right-hand side of (3) are eliminated. We assume that the dynamics of the

marginal utility gap Ωt are endogenous, and that the spread rate ωt exogenously follows

an AR(1) stochastic process:

Ωt = δEtΩt+1 + ωt, (5)

ωt = ρωjtωt−1 + cωjtεωt, (6)

where εωt is the spread shock, which is mutually uncorrelated with επt and εyt, and

εωt ∼ i.i.d.N(0, 1).

We consider two frameworks of central bank loss functions, including the penalties

associated with some types of interest rate variations. The first is inflation targeting, as

in Williams (2012), and the second is the speed limit policy, as in Walsh (2003). The

period loss function for inflation targeting is

LIT (πt, yt, it, it−1, jt) = π2
t + λy2t + ν(it − it−1)

2 + ψjti
2
t , (7)

and that of the speed limit policy is

LSLP (πt, yt, yt−1, it, it−1, jt) = π2
t + λ(yt − yt−1)

2 + ν(it − it−1)
2 + ψjti

2
t . (8)

In both frameworks, the third term represents the penalty associated with interest rate

smoothing and the fourth term represents that of interest rate volatility. Following

Williams (2012), the latter penalty is allowed to change across regimes in order to address

the zero lower bound issue (i.e., ψ1 < ψ2).
5 With respect to the instrument it, the cen-

tral bank is assumed to minimize the intertemporal loss function in the case of inflation

targeting:

Et

∞∑
τ=0

βτLIT (πt+τ , yt+τ , it+τ , it+τ−1, jt+τ ), (9)

and in the speed limit policy case:

Et

∞∑
τ=0

βτLSLP (πt+τ , yt+τ , yt+τ−1, it+τ , it+τ−1, jt+τ ), (10)

5Unfortunately, as found in Williams (2012) as well, introducing the effect of a zero nominal lower
bound is difficult in our model. In addition, while other types of asymmetry in the central bank’s
preferences are considered in the literature (e.g., Chesang and Naraidoo, 2016), they are unlikely to be
incorporated into the present framework.
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subject to (2)–(6), where β is the discount factor of the central bank.

2.2 Markov jump-linear-quadratic approach

As in Williams (2012), we solve the above dynamic optimization problem utilizing the

Markov jump-linear-quadratic approach proposed by Svensson and Williams (2007), as

follows.

The dynamic system of (2)-(6) can be rewritten more compactly in matrix notation

as

xt+1 = A11jt+1xt +A12zt + itb1 +Cjt+1εt+1, (11)

EtHjt+1zt+1 = A21jtxt +A22jtzt + itb2jt , (12)

where xt and zt are stacked vectors of predetermined variables and forward-looking vari-

ables, respectively,

xt = [πt−1, yt−1, yt−2, it−1, επt, εyt, ωt]
′, (13)

zt = [πt, yt,Ωt]
′, (14)

and εt is a three-dimensional vector of shocks
επt

εyt

εωt

 ∼ i.i.d.N(03×1, I3). (15)

Note that the coefficient matrices A11jt , Cjt , Hjt , A21jt , and A22jt , and the coefficient

vectors b2jt depend on the regimes and are random. Furthermore, the coefficient matrix

A12 and the coefficient vector b1 are deterministic.6 The matrix A22jt is required to be

non-singular for ∀jt to ensure that forward-looking variables can be calculated, such that

zt = A−1
22jt

(EtHjt+1zt+1 −A21jtxt − itb2jt). (16)

Turning now to the central bank’s loss function, let yt denote a vector of target

variables, defined as:

yt ≡ D


xt

zt

it

 , (17)

6See Appendix A for the explicit representation of the coefficient matrices and vectors.
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where D is a matrix that selects target variables within predetermined, forward-looking,

and instrument variables. In addition, let Λjt denote a matrix that represents the central

bank’s weight among the target variables. Thus, under inflation targeting or a speed limit

policy, the period loss function can be expressed as

LMP (xt, zt, it, jt) = y′
tΛjtyt =


xt

zt

it


′

D′ΛjtD


xt

zt

it

 ≡


xt

zt

it


′

Wjt


xt

zt

it

 , (18)

where MP ∈ {IT, SLP} and Wjt ≡ D′ΛjtD (see Appendix B). We can now regard the

dynamic optimization problem as minimizing (9) or (10) with respect to it, subject to

(11), (16), and (18). Owing to the presence of forward-looking variables, the dynamic

optimization problem depending on EtHjt+1zt+1 cannot be solved recursively. To ob-

tain optimal policies, Svensson and Williams (2007) rewrite the problem to resolve this

difficulty using the recursive saddle point method (see Appendix C).

Before proceeding to the results, we explain our informational assumptions. We as-

sume “unobservable regimes,” as in Svensson and Williams (2007): both the central bank

and private sector know the probability distribution of εt, the transition matrix P , and

the values of the coefficient matrices in both regime, but they cannot observe the modes

jt. Specifically, their information set includes their subjective distribution of regimes

pt = [p1t, p2t]
′, rather than regimes jt, and is given exogenously pursuant to

pt+τ = (P ′)
τ
pt, for ∀τ ≥ 0, (19)

which means they unlearn observations and do not update their subjective distribution

of regimes.

3 Numerical analysis

3.1 The baseline parameter settings

As a preliminary step to solving the model numerically, we first set the parameters. The

values of the private sector’s behavior come from estimations by Williams (2012, Table

1). In addition, following his estimation, the transition matrix is set to

P =

[
0.9961 0.0039

0.0352 0.9648

]
.
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The data on the U.S. economy is approximately that from the 1980s to the early 2010s,

covering the financial crisis and Great Recession. Note that the data are quarterly obser-

vations and that the model’s period is set to quarters. When estimating these parameters,

Williams (2012) assumes the Taylor rule in the normal regime and the variant rule, in-

cluding the credit spread, in crisis regime, as in Cúrdia and Woodford (2010).

While our focus is the monetary policy framework, the central bank’s discount factor

and preference for output gap variations is similar to his setting as a benchmark. That

is, from now on, unless otherwise noted, β = 1 and λ = 0.5.

3.2 Impulse-response analysis

Having set the parameters, excluding some of the central bank’s preferences, we can

numerically analyze the optimal policy and the impulse responses to financial shocks.7

We perform 10,000 simulations of 40 periods, corresponding to 10 years. The simulated

period corresponds roughly to the duration of the negative output gap in U.S. economy

after the financial crisis, as shown in Figure 1. Our focus is on financial shocks amid the

crisis period, so the Markov chain is initialized in the crisis regime. For the purpose of

evaluating the uncertainty effect, we also report the impulse responses on the constant-

coefficient model, in which the economy is assumed to remain permanently in the crisis

regime.

For inflation targeting, Figure 2 displays the impulse responses of inflation, the output

gap, and the interest rate to an interest rate spread shock, with various settings of the

central bank’s preferences for interest rate variations: (A) naive inflation targeting (ν =

ψ1 = ψ2 = 0); (B) inflation targeting with interest rate smoothing (ν = 0.5 and ψ1 = ψ2 =

0); (C) inflation targeting with a penalty on interest rate volatility (ν = 0, ψ1 = 0.1, and

ψ2 = 0.125); and (D) inflation targeting with a penalty on interest rate volatility, (ν = 0,

ψ1 = 0.7, and ψ2 = 0.875). In Panels C and D, following Williams (2012), we specify that

ψ2 is 25% larger than ψ1 in order to reflect an additional penalty for avoiding the zero

lower bound. The solid lines indicate the median responses, and the dotted lines indicate

the 90% probability bands. Dashed lines show the responses for the constant-coefficient

model.

[Insert Figure 2 around here]

The general visual impression of the distribution of the output gap responses from

Figure 2 is that the tail on the upper side is longer, at least in the first half period.

Note that the output gap recovery under uncertainty is not as slow if the central bank

7In our calculation, we used programs developed by Svensson and Williams (2007), which can be found
on Noah Williams’s website (https://www.ssc.wisc.edu/~nwilliam/DFT_programs.htm).
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imposes the penalty on interest rate variations (Panels B, C, and D). Most of the mass

of the distribution of the output gap responses in Panels B, C, and D lies close to zero

after roughly 20 quarters (5 years), whereas the constant-coefficient responses are more

sluggish, especially in the case of interest rate smoothing (Panel B). This is the result of

the relatively mild responses of interest rates.

In contrast, in Panel A (naive inflation targeting), we find that the median response

of the output gap exhibits a very sluggish recovery after the big negative spike, requiring

more than 40 quarters (10 years) to be restored to its former level. In the constant-

coefficient case, whereas the initial negative spike is alleviated, the output gap recovery is

also sluggish. It is obvious that a slow recovery results from a responsive (hawkish) mon-

etary policy causing an extremely rapid decline in interest rates. Somewhat interestingly,

this implies that it is probable that secular stagnation arises if a central bank intends to

cut interest rates, without hesitating to change the interest rate when a financial crisis

occurs.

Focusing on the effects of financial uncertainty, Figure 3 plots the median impulse

responses of the output gap to an interest rate spread shock, calculated as deviations

from the constant model response. Panel A of this figure shows the results of inflation

targeting for various ν, ranging from zero to one, when ψ1 = ψ2 = 0. Excluding the

case where ν is almost or exactly zero, the uncertainty effects are nearly independent of

ν. The uncertainty leads to the output gap recovering more quickly in the vicinity of 10

quarters after the shock. Panel B shows the results for various ψ1, ranging from zero to

one, when ψ2 is 25% larger than ψ1 and ν = 0. On the whole, the uncertainty effects on

the output gap are small throughout the entire period, with the obvious exception of the

case where ψ1 is minimal. To test the role of the asymmetric assumption in the penalty

on interest rate volatility, Panel C explores the case where ψ2 is equal to ψ1 and ν = 0.

Here, we find that the results of Panel C are mirrored by those of Panel B, suggesting

that the asymmetric assumption is not relevant to the uncertainty effects.

[Insert Figure 3 around here]

Turning next to the speed limit policy, once again, Figure 4 shows the impulse re-

sponses of inflation, the output gap, and the interest rate to an interest rate spread

shock. First, and most importantly, the output gap returns to its original level within

roughly 20 quarters (5 years), regardless of the presence of the penalty on any interest

rate variation. This holds with or without the uncertainty, indicating that the speed limit

policy is unlikely to cause secular stagnation. It turns out that the uncertainty tends

to buffer the depth of the recession. Compared with inflation targeting, the speed limit

policy appears to cause the output gap to overshoot the original level in the long-run.
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[Insert Figures 4 and 5 around here]

Once again, in the case of the speed limit policy, Figure 5 plots the median impulse

responses of the output gap to an interest rate spread shock. These responses are measured

in terms of deviations from constant model response. As shown in Panel A, for ∀ν ∈ [0, 1],

the uncertainty boosts the output gap from 0 to 10 quarters when ψ1 = ψ2 = 0. The

largest degree is confirmed when ν = 0, which corresponds to Panel A of Figure 4. In

Panels B and C, we find a relatively small impact of the uncertainty when the central

bank considers interest rate volatility. We also find a high degree of similarity in the

impulse responses between Panels B and C, which means the uncertainty effects are not

affected by the central bank’s asymmetric behavior toward interest rate volatility.

3.3 Further discussion and robustness

Except for some of the central bank’s preference parameters, we have so far assumed the

setting in Williams (2012). However, the qualitative features observed thus far might

depend on the numerical values of the parameters. In this subsection, we conduct several

sensitivity analyses in order to check the robustness. In particular, we are interested in the

sensitivity of the central bank’s preference parameters, because these are open to debate

as they are not estimated using real data.

First, in terms of the secular stagnation, the central bank’s discount factor seems

relevant. While, thus far, we have assumed β = 1, the output gap dynamics of our

variables might change if the central bank discounts the future (e.g., Paez-Farrell, 2012). If

the central bank discounts the period loss function in the future, we expect the possibility

that a future presence of the output gap is relatively permissible.

To formally test this hypothesis, Figure 6 explores the sensitivity of the discount

factor. Panel A shows the output gap response results of inflation targeting when β = 0.9

(ν = ψ1 = ψ2 = 0), together with the benchmark results shown in Panel A of Figure

2. Panel B shows similar results for the speed limit policy, together with the benchmark

results shown in Panel A of Figure 4. In the sensitivity analysis, a comparison of the

results reveals that if the central bank discounts the future, then the output gap recovers

more sluggishly in the case of inflation targeting. In contrast, such differences are not

evident in the case of the speed limit policy. Instead, the speed limit policy overshoots

the output gap after about 20 quarters by more than the benchmark results. When the

penalties on interest rate variations are imposed, the results are similar to those in the

absence of the discount.

[Insert Figure 6 around here]
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Second, the relative penalty on the output gap, λ, could be relevant. Imposing larger

or smaller values of λ yields similar results to our benchmark case, where λ = 0.5, at least

qualitatively.

Third, a possible extension to the monetary policy framework would be to add a

penalty on the interest spread to (7) and (8):

L̂IT (πt, yt, ωt, it, it−1, jt) ≡ π2
t + λy2t + ζjtω

2
t + ν(it − it−1)

2 + ψjti
2
t ,

L̂SLP (πt, yt, yt−1, ωt, it, it−1, jt) ≡ π2
t + λ(yt − yt−1)

2 + ζjtω
2
t + ν(it − it−1)

2 + ψjti
2
t .

This extension is motivated by the estimation framework of Williams (2012), who incorpo-

rates the interest spread into an extended Taylor rule in the crisis regime when estimating

the parameters. However, the impulse responses (not reported) are very similar to those

without the penalty on the interest spread. Incidentally, adding a penalty on the marginal

utility gap Ωt also yields very similar results.

Furthermore, we may ask how sensitive the results are to alternative values of the

transition matrix P . It is conceivable that financial crises are not as common as that

indicated in the estimation by Williams (2012). While he limits the sample period, owing

to data availability, the economy will remain in a normal regime for longer and in a crisis

regime for less time if the period is extended. To address this issue, we recalculate the

impulse responses under alternative transition matrices, such as

P =

[
0.999 0.001

0.05 0.95

]
,

in which the normal regime is absorbing to accommodate the belief that the crisis regime

is unlikely to return, and vice versa. These exercises yield very similar median responses,

although some tails of the distribution become somewhat longer.

Finally, from amassed empirical evidence, we might infer that, in addition to ψ and ζ, λ

and ν are also state-dependent (e.g., Clarida et al., 2000; Bianchi, 2012). Nonetheless, the

main features of the above results are not sensitive to the introduction of the asymmetry

of λ and ν across the regimes.

4 Conclusion

Despite the responsive monetary policy subsequent to the financial crisis in the late 2000s,

the Great Recession was followed by an extremely slow recovery. This study demonstrates

that the degree to which the output gap recovers quickly from stagnation can be traced

to the monetary policy adopted in response to the financial shock. We also show that

12



financial uncertainty can be the origin of secular stagnation.

We first establish that a sluggish output gap response is explained by pure inflation

targeting, in the sense that the central bank is not concerned about interest rate variations.

The sluggishness of the simulated path is shown to be stronger when financial uncertainty

exists. This result is fairly consistent with the actual experience observed in the U.S.

economy. In contrast, even in the absence of interest rate variation, speed limit policies

are shown to deliver a more desirable outcome in terms of the output gap recovery.

Moreover, in speed limit policies, financial uncertainty exerts an upward force on the

output gap. Regardless of the financial uncertainty, the better performance of the speed

limit policies is robust to various parameter settings, including the case when the central

bank discounts the future.

We view this study to be part of a growing body of literature on the demand aspect

of secular stagnation. Lastly, future work that investigates the elaborate mechanisms of

demand- and supply-side interactions would be especially important. For example, the

effect of an investment hangover on the supply side should be taken into account.

Appendix A

The explicit representations of the coefficient matrices and the vector in (11) and (12) are

xt+1 =



0 0 · · · 0

0 0 · · · ...

0 1 0 · · ·
0 · · ·
... · · · 0

0 · · · 0 ρωjt+1


︸ ︷︷ ︸

A11jt+1

xt +



1 0 0

0 1 0
... 0

...
...

0 0 0


︸ ︷︷ ︸

A22

zt + it



0

0

0

1

0

0

0


︸︷︷︸
b1

+



0 0 0
...

...
...

0

1 0

0 1 0

0 0 cωjt+1


︸ ︷︷ ︸

Cjt+1

εt+1,

Et


ωfjt 0 0

βrjt βfjt 0

0 0 δ


︸ ︷︷ ︸

Hjt+1

zt+1 =


−ω̂fjt 0 0 0 −cπjt 0 0

0 −β̂fjtβyjt −β̂fjt β̂yjt 0 0 −cyjt −ϕjt

0 · · · 0 0 −1


︸ ︷︷ ︸

A21jt

xt

+


1 −γjt −ξjt
0 1 −θjt
0 0 1


︸ ︷︷ ︸

A22jt

zt + it


0

βrjt

0


︸ ︷︷ ︸

b2jt

,
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where ω̂fjt = 1− ωfjt , β̂fjt = 1− βfjt , and β̂yjt = 1− βyjt .

Appendix B

The loss function (18) of inflation targeting, including the penalty on interest rate varia-

tions, as in Williams (2012), is described as

LIT (·) = π2
t + λy2t + ν(it − it−1)

2 + ψjti
2
t

=


πt

yt

it − it−1

it


′

︸ ︷︷ ︸
y′
t


1 0 0 0

0 λ 0 0

0 0 ν 0

0 0 0 ψjt


︸ ︷︷ ︸

Λjt


πt

yt

it − it−1

it


︸ ︷︷ ︸

yt

=


xt

zt

it


′



0 0 0 0

0 0 0 0

0 0 0 0

0 0 −1 0

0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

0 0 0 0

0 0 1 1


︸ ︷︷ ︸

D′


1 0 0 0

0 λ 0 0

0 0 ν 0

0 0 0 ψjt


︸ ︷︷ ︸

Λjt



0 0 0 0

0 0 0 0

0 0 0 0

0 0 −1 0

0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

0 0 0 0

0 0 1 1



′

︸ ︷︷ ︸
D


xt

zt

it



=


xt

zt

it


′



O3×3 | O3×8

− − − − − − − − − −
| ν 0 0 0 0 0 0 −ν
| 0 0 0 0 0 0 0 0

| 0 0 0 0 0 0 0 0

| 0 0 0 0 0 0 0 0

O8×3 | 0 0 0 0 1 0 0 0

| 0 0 0 0 0 λ 0 0

| 0 0 0 0 0 0 0 0

| −ν 0 0 0 0 0 0 ν + ψjt


︸ ︷︷ ︸

Wjt


xt

zt

it

 .
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Similarly, that of the speed limit policy with the penalty on interest rate variations is

described as

LSLP (·) = π2
t + λ(yt − yt−1)

2 + ν(it − it−1)
2 + ψjti

2
t

=


πt

yt − yt−1

it − it−1

it


′

︸ ︷︷ ︸
y′
t


1 0 0 0

0 λ 0 0

0 0 ν 0

0 0 0 ψjt


︸ ︷︷ ︸

Λjt


πt

yt − yt−1

it − it−1

it


︸ ︷︷ ︸

yt

=


xt

zt

it


′



0 0 0 0

0 −1 0 0

0 0 0 0

0 0 −1 0

0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

0 0 0 0

0 0 1 1


︸ ︷︷ ︸

D′


1 0 0 0

0 λ 0 0

0 0 ν 0

0 0 0 ψjt


︸ ︷︷ ︸

Λjt



0 0 0 0

0 −1 0 0

0 0 0 0

0 0 −1 0

0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

0 0 0 0

0 0 1 1



′

︸ ︷︷ ︸
D


xt

zt

it



=


xt

zt

it


′



0 | 01×10

− − − − − − − − − − − −
| λ 0 0 0 0 0 0 −λ 0 0

| 0 0 0 0 0 0 0 0 0 0

| 0 0 ν 0 0 0 0 0 0 −ν
| 0 0 0 0 0 0 0 0 0 0

| 0 0 0 0 0 0 0 0 0 0

010×1 | 0 0 0 0 0 0 0 0 0 0

| 0 0 0 0 0 0 1 0 0 0

| −λ 0 0 0 0 0 0 λ 0 0

| 0 0 0 0 0 0 0 0 0 0

| 0 0 −ν 0 0 0 0 0 0 ν + ψjt


︸ ︷︷ ︸

Wjt


xt

zt

it

 .
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Appendix C

In this appendix, we briefly explain the recursive saddle point method, which enables us

to regard the original problem as a certain kind of recursive problem.

To do so, we first rewrite (16) as

EtHjt+1zt+1 = µt,

03×1 = A21jtxt +A22jtzt + itb2jt − µt,

where µt is an 3× 1 vector. Hence, zt becomes a linear function of xt,µt, it, jt; that is

zt = z̃(xt,µt, it, jt) ≡ A−1
22jt

(−A21jtxt + µt − itb2jt).

Moreover, we redefine the objective function as

L̃ (x̃t,µt, it,γt, jt) ≡ L (xt, z̃(xt,µt, it, jt), it, jt)− γ ′
tµt + ξ′t−1

1

β
Hjt z̃(xt,µt, it, jt)

≡

[
x̃t

ĩt

]′

W̃jt

[
x̃t

ĩt

]
,

where x̃t ≡
[
x′
t, ξ

′
t−1

]′
and ĩt ≡ [µ′

t, it,γ
′
t]
′ are vectors of appropriate dimensions, W̃jt

is a matrix of appropriate dimension, and ξt−1 and γt are additional state and control

variables, respectively, satisfying ξt = γt.

Then the dual-optimization problem, or the recursive saddle point problem, is given

by

max
{µt,it}∞t=0

min
{γt}∞t=0

−E0

∞∑
t=0

βt

[
x̃t

ĩt

]′

W̃jt

[
x̃t

ĩt

]
,

s.t. xt+1 = A11jt+1xt +A12z̃(xt,µt, it, jt) + itb1 +Cjt+1εt+1,

ξt = γt.

Because our simulation assumes an unobservable regime, the probability distribution of

the regime is considered as a state variable.8 Thus, the state vector is finally stacked as

[x̃′
t,p

′
t, jt]

′. The dual-optimization problem can be solved using algorithms to determine

the solution, value functions, and optimal policy functions. The solution to the main

problem can be obtained from that of the dual-optimization problem. See Svensson and

Williams (2007) for further detail.

8Williams (2012) considers “observable regimes” as well as “unobservable regimes.” Here, we omit
the observable cases, because there is a small uncertainty effect in that case.
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Figure 1: Real GDP, real potential GDP, and output gap.

Notes: Real GDP and real potential GDP are taken from the website of the St. Louis Fed FRED.

Output gap is percentage change of real GDP to real potential GDP.
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Figure 2: Impulse response to an interest rate spreads shock. (A) Naive inflation targeting,
ν = ψ1 = ψ2 = 0. (B) Inflation targeting with interest rate smoothing, ν = 0.5 (ψ1 =
ψ2 = 0).
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Figure 2: Continued. (C) Inflation targeting with penalty on interest rate volatility,
ψ1 = 0.1 and ψ2 = 0.125 (ν = 0). (D) Inflation targeting with penalty on interest rate
volatility, ψ1 = 0.7 and ψ2 = 0.875 (ν = 0).
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Figure 3: Median impulse response of output gap to an interest rate spreads shock,
calculated as deviations from constant model response. (A) Inflation targeting when
ψ1 = ψ2 = 0. (B) Inflation targeting when ν = 0 and ψ2 is 25% larger than ψ1. (C)
Inflation targeting when ν = 0 and ψ1 = ψ2.
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Figure 4: Impulse response to an interest rate spreads shock. (A) Naive speed limit
policies, ν = ψ1 = ψ2 = 0. (B) Speed limit policies with interest rate smoothing, ν = 0.5
(ψ1 = ψ2 = 0).
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Figure 4: Continued. (C) Speed limit policies with penalty on interest rate volatility,
ψ1 = 0.1 and ψ2 = 0.125 (ν = 0). (D) Speed limit policies with penalty on interest rate
volatility, ψ1 = 0.7 and ψ2 = 0.875 (ν = 0).
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Figure 5: Median impulse response of output gap to an interest rate spreads shock,
calculated as deviations from constant model response. (A) Speed limit policies when
ψ1 = ψ2 = 0. (B) Speed limit policies when ν = 0 and ψ2 is 25% larger than ψ1. (C)
Speed limit policies when ν = 0 and ψ1 = ψ2.
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Figure 6: Discount factor and impulse response of output gap to an interest rate spreads
shock. (A) Inflation targeting. (B) Speed limit policies.
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