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Abstract

This study examines the impact of outlier-adjusted data on business cycle inferences using
coincident indicators of the composite index (CI) in Japan. To estimate the CI and business
cycles, this study proposes a Markov switching dynamic factor model incorporating Student’s
t-distribution in both the idiosyncratic noise and the factor equation. Furthermore, the model
includes a stochastic volatility process to identify whether a large shock is associated with a
business cycle. From the empirical analysis using unadjusted data, both the factor and the
idiosyncratic component have fat-tail error distributions, and the estimated CI and recession
probabilities are close to those published by the Economic and Social Research Institute.
Compared with the estimated CI using the adjusted data set, the outlier adjustment reduces
the depth of the recession. Moreover, the results of the shock decomposition show that the
financial crisis in mid-2008 was caused by unexpected shocks. In contrast, the Great East
Japan Earthquake in 2011 was derived from idiosyncratic noise and did not cause a recession.
When analyzing whether to use a sample that includes outliers associated with the business
cycle, it is desirable to use the outlier-adjusted data set.
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1 Introduction

Assessing business fluctuations and cycle phases has attracted much attention among macroe-
conomists and econometricians, because the magnitudes of economic variables are important
to the manufacturing and service industries, central banks, and government. In particular, the
severe recession in mid-2008 affected all industrialized countries. The impact of this recession on
the business cycles in these countries was so large that it is difficult to measure the business fluc-
tuations using conventional methods. Thus, research on business cycles has intensified, and is
required in order to improve business index measures and to extend econometric methodologies.

A composite index (CI) is widely used to measure trends and quantitative business fluctu-
ations in countries such as the United States, United Kingdom, Japan, and so on. This study
analyzes Japanese macroeconomic data series and business cycles. The Japanese economy has
experienced severe crises in recent decades, for example, the financial crisis in mid-2008 and the
major earthquake in March 2011. Although the Japanese economy was damaged by these crises,
the shocks themselves vary in their characteristics. Business dropped off in mid-2008, because
after the financial crisis, world trade began to shrink rapidly. This shock is one associated with
business cycles, particularly recessions. In contrast, the Great East Japan Earthquake is an
example of a natural disaster that affects isolated economic activity.

The CI in Japan is an index that replaces outliers based on descriptive statistics. The
adjustment identifies outliers as observations in component series that lie outside the normal
range of expected observations, and replaces them with estimated values in order to measure
robust business cycles. Since this adjustment automatically replaces extreme values, it may be
unable to distinguish fully between shocks derived from isolated observations and those from
recessions. Therefore, one implication is that using data with outlier replacement discards
information on the business cycle. In other words, if the outlier is associated with a recession,
then the adjustment reduces the depth of the recession. Surprisingly, despite some studies
investigating the link between seasonal adjustments and business cycles, such as Franses and
Paap (1999) and Matas-Mir et al.(2008), the impact of eliminating outliers has not been well
discussed, with the exception of the study of Balke and Fomby (1994). This is an important
issue, because the data adjustment may mislead an empirical analysis, resulting in erroneous
conclusions. Thus, the first contribution of this study is to examine the impact of outlier
adjustments on business cycle inferences.

Large shocks in macro economic data series have been discussed since the 1990s. For ex-
ample, Christiano and Den Haan (1996) pointed out that macro economic variables exhibit
non-Gaussian behavior, which is called the fat-tailed problem. Recently, it has become nec-
essary to consider excess kurtosis when analyzing macro economic time series data, such as
industrial production and business cycles (e.g., Fagiolo et al., 2008; Watanabe, 2014; Ascari
et al., 2015), and when applying macro economic models such as the dynamic stochastic general
equilibrium model (Cúrdia et al., 2014). Therefore, we need to consider the properties of the
data distributions in the econometric models.

For business cycle inferences, we employ the Markov switching dynamic factor (MSDF)
model, as used by Kim and Yoo (1995), Chauvet (1998), and Kim and Nelson (1998). The MSDF
model is widely used to simultaneously track business fluctuations as co-movements among
individual economic indicators, and phases such as a recession regime or expansion. Using the
MSDF model, numerous papers analyze the properties of business cycles, and these specifications
are applied to empirical analyses in macro econometrics (e.g., Kaufman, 2000; Camacho et al.,
2014). The MSDF model is extended by incorporating Student’s t-distribution and a stochastic
volatility (SV) process. The investigation is related to that of Watanabe (2014), who presented
evidence supporting the use of heavy-tail error distributions, based on the CI in Japan. He also
showed a model with good fit that used an SV and a fat-tail distribution. We assume that the

2



error distributions of both the idiosyncratic equation and the factor equation follow Student’s
t-distribution. This formation allows us to compute the outliers for the latent factor noise and
the idiosyncratic noise. Moreover, including a t-distribution for the error distribution and an
SV process in the factor equation makes it possible to decompose shocks to business cycles into
unexpected shocks and conditional expected shocks. The second contribution is to extend the
MSDF model to include large shocks. Once the SV process and non-Gaussian distribution are
introduced, it becomes difficult to evaluate the likelihood. We employ the Markov chain Monte
Carlo method in the Bayesian inference to estimate the model.

In our empirical analysis, we apply our MSDF model to 11 coincident economic indicators
from February 1985 to December 2014, as in the Economic and Social Research Institute (ESRI)
data set. From the results of the estimated parameters, the posterior mean of the degree of free-
dom in the factor equation is close to 7, denoting that the latent factor follows a heavy-tailed
distribution. Compared with the CI of the ESRI, we show that the use of outlier adjusted data
leads to poorer performance in estimating business fluctuations and in detecting cyclical charac-
teristics. The lack of information on outliers causes an underestimation of business fluctuations.
Moreover, the results of the decomposition of shocks shows that the impact of a financial crisis
on the business cycle is large, and is derived from unexpected shocks. On the other hand, the
outlier of the Great East Japan Earthquake in 2011 is associated with an idiosyncratic shock,
and did not cause a recession. Our model is able to distinguish between shocks associated with
a recession and the disaster shocks. The outlier adjustment misleads the inference if the sample
includes various types of outliers.

The rest of paper is organized as follows. Section 2 explains the CI in Japan and the outlier
adjustment by the ESRI, and shows the effect of the adjustment using descriptive statistics.
Section 3 extends the MSDF model by incorporating a heavy-tailed error distribution and an
SV process. Section 4 explains the Bayesian method used to analyze this model. Section 5
fits the model to macroeconomic data in Japan and summarizes the results. Finally, Section 6
concludes the paper.

2 Data issues and outlier adjustment

2.1 Composite index and coincident indicators

In Japan, the composite index of coincident indicators (CI) is well known as a quantitative
measure of the current business conditions or state of aggregate economic activity. The CI is
designed by the ESRI, Cabinet Office, Government of Japan. Recently, two types of CI were
announced. The first is an index with outlier replacement. The second is an index without
outlier replacement. The ESRI adjust data so that short-term shocks do not overly affect the
index. In the past decade, the Japanese economy has experienced large shocks, such as the
financial crisis in mid-2008 and the Great East Japan Earthquake in 2011. Owing to these
crises, the Japanese economy has struggled. Subsequently, a difference has emerged from the
two indices.

Figure 1 plots the CI with and without outlier replacement in the top of the figure, and
the growth rates in the bottom of the figure for the period January 1985 to September 2014.
The growth rates are computed as the log-difference and multiplied by 100, and include shaded
areas to indicate periods of national recession, as determined by the ESRI. The figure shows
that the value of the CI with outlier replacement is larger than that without outlier replacement
after the financial crisis. These figures show that the two crises had a significant impact on the
business cycles. However, we believe that these two events vary in terms of their characteristics.
The Japanese economy entered a recession, when world trade began to shrink after the financial
crisis. In contrast, the damage to nuclear power stations by the Great East Japan Earthquake
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reduced electricity supply capacity and caused several indicators of industrial production to
decrease sharply. Subsequently, the ESRI did not classify this period as an economic recession,
although the decline in the growth rate in 2011 was larger than after the financial crisis. It is
natural that the shock from the earthquake not be associated with a recession. Moreover, after
the earthquake, the values of the two CIs differ markedly. The differences in the data suggest
that the CI with outlier replacement underestimates the business cycle. We need to examine
how the adjusted outliers influenced the business condition measure.

Next, we shift the emphasis to the component indicators and the procedure used to exclude
outliers. To construct this index, the ESRI selects 11 macroeconomics indicators, related to
industrial production, trade sales, and employment1. Table 1 summarizes the key macroeco-
nomics indicators and lists the abbreviation for each variable. We use monthly data2, which
is seasonally adjusted by the X-12-ARIMA procedure, from January 1985 to September 2014.
Figures 2 and 3 show time series plots of the coincident indicators. Here, the growth rates of
the indicators other than the retail sales value (RSV), the wholesale sales value (WSV), and
the effective job offer rate (EJOR) are calculated as the log-difference multiplied by 100. The
RSV, WSV, and EJOR are calculated as the growth rate from the previous month because these
indicators are already published in percentage form, or are zero or negative values. From the
figure, we find that almost all indicators fell substantially in the period of the financial crisis. On
the other hand, in the period of the Great East Japan Earthquake, although indicators related
to the manufacturing industry fell suddenly, those related to sales and operating profits and the
job market did not drop by as much.

2.2 Outlier adjustment

Here, we explain the approach used to remove outliers. According to Tsay (1988) and Balke
and Fomby (1994), outliers are defined as extraordinary and infrequently occurring shocks that
have large and significant effects on time series. These authors show how to identify outliers
and their search algorithm using the ARMA model approach. In this study, we illustrate the
outlier adjustment utilized by the ESRI. This adjustment is based on descriptive statistics and
is also used by the OECD.

Let yit and y∗it denote the growth rate of each indicator and the adjusted growth rate,
respectively. Outliers in the growth rate of each indicator are replaced as follows:

y∗it =


−κ(Q3i −Q1i), if yit < −κ(Q3i −Q1i),

yit, if − κ(Q3i −Q1i) < yit < κ(Q3i −Q1i),
κ(Q3i −Q1i), if κ(Q3i −Q1i) < yit,

(1)

where Q3i(Q1i) is the third (first) quartile in the interquartile range of the growth rates of
the i th indicator. In this study, the interquartile range is calculated using the sample from
January 1985 to December 2010, and κ is set as 2.02 as in the ESRI approach. Figure 4 plots
the growth rate of the coincident indicators with outlier replacement. It seems that data series
are stationary data after eliminating outliers.

This adjustment defines outliers as observations in component series that lie outside the
interquartile range of each growth rate, and are automatically replaced. If all detected outliers
are associated with irregular shocks such as war, strikes, or disasters, then this procedure is
effective. However, if an outlier is associated with a business cycle, as in the financial crisis in
mid-2008, the use of adjusted data may distort the determination of recession. This procedure
cannot distinguish between the shocks. Furthermore, this approach is an ad hoc way to exclude

1The ESRI does not include data on personal income, which is a major coincident economic indicator in the
United States.

2Coincident indicators are available at http://www.esri.cao.go.jp/en/stat/di/di-e.html.
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outliers. We attempt to track the business cycle from the coincident economic indicators in order
to examine the influence on estimated business fluctuations and cycles of a lack of information
on the outliers. Thus, we use the coincident economic indicators instead of the CI of the ESRI
in our empirical analysis.

2.3 Descriptive statistics of coincident indicators

In this subsection, we analyze the statistical properties of the growth rate distributions. Table 2
summarizes the descriptive statistics of the growth rates of the unadjusted data set. The number
of time series is 356 for each indicator. The mean of each indicator is not significantly different
from 0. However, the standard deviations are high because of the financial crisis and the Great
East Japan Earthquake. The skewness of each indicator is negative, and significantly different
from 0. The kurtosis of each indicator is significantly over 3, which is larger than that of a normal
distribution. The JB (Jarque–Bera) statistics of all the indicators reject the null hypothesis of
normality, indicating that the normal distribution does not perform well in describing the growth
rate distribution of the indicators, as shown by Christiano and Den Haan (1996). This implies
that the growth rates of the coincident indicators have non-normal distributions, or leptokurtic
distributions with tails that are much fatter than those of normal distributions. From the values
of LB(10)3 in the table, we confirm that the null hypothesis for the growth rates, other than
IIPP, are rejected at the 5% significance level. Furthermore, the results of LB2(10), denoting
the null hypothesis for the squared growth rates, imply that the volatility in the squared growth
rates of all the indicators include autocorrelation.

For reference purposes, Table 3 summarizes the descriptive statistics of the growth rates
with outlier replacement. The kurtosis of each indicator is significantly less than 3. According
to the value of the JB test, the null hypothesis of normality is not rejected. Other than these
points, the results are not significantly different. In summary, the growth rates of non adjusted
coincident economic indicators have the following features: negative skewness, excess kurtosis,
autocorrelation in the growth rate, and autocorrelation in the squared growth rate. Furthermore,
outlier adjustment reduces their kurtosis.

In this study, we track the business fluctuations and cycles from several coincident economic
indicators using an econometric model that considers these properties of the sample. In previous
analyses on business cycles in Japan, Fukuda and Onodera (2001) utilized the dynamic factor
model to estimate the CI. Subsequently, Watanabe (2003) and Hayashida and Hewings (2009)
used a Markov switching dynamic factor model proposed by Kim and Nelson (1998). The Markov
switching dynamic factor model is widely used to estimate business fluctuations as co-movements
among individual economic indicators and cyclical phases (recession or boom). Using the MSDF
model, the autocorrelation and negative skewness in the growth rates of coincident economic
indicators may partly be explained by the regime switch process of the business cycle in the
Markov switching model. Moreover, Watanabe (2014) also showed a model with good fit using
an SV and a fat-tail distribution, based on the CI of the ESRI, and did not detect turning points
of business cycles with the model based on a normal distribution. From the descriptive statistics,
the autocorrelation of the squared growth rate implies that volatility follows an autoregressive
process. Therefore, we incorporate the Markov switching factor model with a heavy-tailed
error distribution and an SV process for the business cycle inference. In order to divide the
outliers into shocks associated with business cycles, especially recessions and shocks that affect
isolated business cycles, we assume the error distributions of the idiosyncratic noise and the
factor equation both follow Student’s t-distribution.

3These statistics denote the Ljung-Box statistics adjusted by Diebold (1988) to test the null hypothesis of no
autocorrelations up to 10.
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3 Econometric model

3.1 Markov switching dynamic factor model

First, we introduce the simplest MSDF model4 as in Diebold (2003). This study tracks only
the business trends from several coincident indicators5. We thus fit a single factor model with
regime switching. Suppose we have data on n macroeconomic variables. Let yit for i = 1, . . . , n
and t = 1, . . . , T denote the growth rate of the i th macroeconomic variable at time t. Then, yit
is determined by changing the latent common factor ct and the idiosyncratic component eit:

yit = γict + eit, (2)

eit = ψiei,t−1 + ϵit, ϵit ∼ N (0, σ2i ), (3)

where γi denotes a factor loading term, and ψi is the autoregressive time dependence parameter.
We assume ϵit is i.i.d. across i and t with zero mean and variance σ2i . We define a latent variable,
ct (t = 1, . . . , T ), assumed as the CI, as the following autoregressive process:

ct = µt + ϕ(ct−1 − µt−1) + ηt, ηt ∼ N (0, 1), , (4)

µt = µ(0)(1− st) + µ(1)st, µ(0) < µ(1), (5)

st =

{
1 boom
0 recession

,

where µt shifts depending on the state variable st, ϕ is an autoregressive time dependence
parameter, and ηt is i.i.d. across t with zero mean and variance, which is normalized to unity
for the identification of the model, and is uncorrelated with ϵit for i = 1, . . . , n and t = 1, . . . , T .
We assume state variable st takes the value 0 when the economic condition is a recession period,
and 1 in a boom. The inequality µ(0) < µ(1) is assumed in equation (4) because the growth
of business conditions will be greater in a boom regime than in a recession regime. Moreover,
based on the conventional MS model, the dynamics of st are first-order Markov processes, with
the following transition probability matrix:

Π =

[
p0 1− p1

1− p0 p1

]
.

3.2 Heavy-tailed error distributions and stochastic volatility

In this study, we extend the MSDF model with a heavy-tailed error distribution and SV process.
We assume the error terms eit and ϵit follow Student’s t-distribution. This distribution has higher
kurtosis than that of the Gaussian distribution, and is widely used in financial econometrics for
considering the tail risk. Furthermore, models including an SV process approach have been
applied in macro economic data analyses (e.g., Primiceri, 2005; Nakajima et al., 2011; Cúrdia
et al., 2014). They showed that it is necessary to incorporate an SV process for macro economic
time series data. However, it is difficult to calculate the latent variable for non-Gaussian models
using a conventional Kalman filter, because the likelihood with heavy-tailed errors cannot be
evaluated analytically. Thus, we add auxiliary variables and utilize the data augmentation
approach in a Bayesian inference. Then, the error term in equations (3) and (4) is rewritten,
and the SV process is as follows:

ϵit =
√
λituit, uit ∼ N (0, σ2i ), (6)

ηt = exp

(
ht
2

)
√
ωtzt, zt ∼ N (0, 1), (7)

ht = βht−1 + ζt, ζt ∼ N (0, ξ2), (8)
4Strictly speaking, this model is a static factor model.
5There has been some recent research using large data sets (Stock and Watson, 2014).
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where λit and ωt follow the hierarchical prior distribution:

λit ∼ IG
(νi
2
,
νi
2

)
,

νf − 2

ωt
∼ χ2(νf ),

where IG, νi, and νf denote the inverse gamma distribution and unknown parameters of the
degree of freedom, respectively. Then, ηt follows the standardized Student’s t-distribution such
that the variance is one. We assume that νi > 2 and νf > 2 in order to satisfy a finite
variance. In equation (8), ht denotes the log volatility at time t, and the parameter β captures
the autocorrelation in the volatility. In our empirical analysis, we estimate the MSDF model
with both a t-error and SV, and label it as the MSDF-SVt model.

Finally, let y = {yi}ni=1, yi = {yit}Tt=1, γ = {γi}ni=1, ψ = {ψi}ni=1, σ
2 = {σ2i }ni=1, ν =

{νi}ni=1, µ = (µ(0), µ(1))′, and p = (p0, p1). To simplify the notation, let θ = (θ1, θ2), θ1 =
(γ, σ2, ψ, ν, µ, p, ϕ, νf ), θ2 = (β, ξ2), c = {ct}Tt=1, λ = {λi}ni=1, λi = {λit}Tt=1, ω = {ωt}Tt=1,
s = {st}Tt=1, h = {ht}Tt=1, and ϑ = (c, λ, ω, s, h). Given θ and ϑ, the conditional likelihood is as
follows:

L(y|θ, ϑ) =
n∏
i=1

T∏
t=1

f(yit|θ, ϑ), (9)

where

f(yit|θ, ϑ) =


√

1−ψ2
i

2πλitσ2
i
exp

{
− (1−ψ2

i )z
2
it

2λitσ2
i

}
, if t = 1

1√
2πλitσ2

i

exp
{
− (zit−ψizi,t−1)

2

2λitσ2
i

}
, if t > 1

with zit = yit − γict.

4 Posterior analysis

4.1 Joint posterior distribution

Since we adopt a Bayesian approach, we complete the model by specifying the prior distribution
over the parameters. Thus, we apply the following prior distribution:

π(θ) =

{
n∏
i=1

π(γi)π(ψi)π(σ
2
i )π(νi)

}
π(µ)π(ϕ)π(p)π(νf )π(β)π(ξ

2), (10)

Given the prior density π(θ) and the likelihood function given in equation (9), the joint posterior
distribution can be expressed as

π(θ, ϑ|y) ∝ L(y|θ, ϑ)π(ϑ|θ)π(θ). (11)

In this study, we assume the following proper prior distributions:

µ ∼ N (µ0,Σµ0)I[µ
(0) < µ(1)], γi ∼ N (γ0, σ

2
γ0,i),

ψi + 1

2
∼ Beta(aψ,i, bψ,i),

ϕ+ 1

2
∼ Beta(aϕ, bϕ), p0 ∼ Beta(ι00, ι01), p1 ∼ Beta(ι11, ι10),

σ2i ∼ IG
(
τi0
2
,
δi0
2

)
, νi ∼ G(A0, B0)I[νi > 2], νf ∼ G(A∗

0, B
∗
0)I[νf > 2],

β + 1

2
∼ Beta(aβ, bβ), ξ

2 ∼ IG
(
τh
2
,
δh
2

)
,
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where G denotes gamma distribution. Then, I(·) is the indicator function that takes one if
the condition in parentheses is satisfied, and zero otherwise. The prior distribution of µ is
the truncated normal distribution in order to satisfy the condition, µ(0) < µ(1). For prior
distributions of ψi and ϕ, we assume that ψi+1

2 and ϕ+1
2 follow the beta distribution, because ψi

and ϕ satisfy the stationary condition. For the prior distributions of νi and νf , we assume that
truncated gamma distributions (Watanabe, 2001).

4.2 MCMC estimation

This subsection introduces the algorithm to estimate the parameters using the MCMC method.
We need to use multiple iterations to evaluate the marginal posterior distribution in the joint
posterior distribution (11). It is difficult to solve the marginal posterior distribution if the
joint posterior distributions are complicated. Then, we sample the parameters from the full
conditional distribution of the parameter using the MCMC method, which is an algorithm
that utilizes Markov sampling and Monte Carlo integration to approximate the full conditional
distribution. Thus, we draw the random samples from the posterior distributions for the MSDF-
SVt model using the MCMC methods, as follows:

1. Initialize θ and ϑ.

2. Draw γi | θ−γi , ϑ, y for i = 1, . . . , n.

3. Draw ψi | θ−ψi , ϑ, y for i = 1, . . . , n.

4. Draw σ2i | θ−σ2
i
, ϑ, y for i = 1, . . . , n.

5. Draw µ | θ−µ, ϑ
6. Draw ϕ | θ−ϕ, ϑ
7. Draw c | θ, ϑ−c, y
8. Draw s | θ, ϑ−s, y
9. Draw p | θ−p, ϑ, y

10. Draw λi | θ, ϑ−λi for i = 1, . . . , n.

11. Draw νi | θ−νi , ϑ for i = 1, . . . , n.

12. Draw ω| θ, ϑ−ω
13. Draw νf | θ−νf , ϑ
14. Draw β| θ−β, ϑ
15. Draw ξ2| θ−ξ2 , ϑ
16. Draw h| θ, ϑ−h, y
17. Go to 2.

Here, θ−µ denotes the set of all parameters, excluding µ. We can implement the sampling scheme
of Watanabe (2014) for steps 5, 6, 8, and 9. For step 7, we sample the latent variables using
an efficient simulation smoother proposed by Durbin and Koopman (2002). We also utilize the
acceptance rejection Metropolis Hastings (AR-MH) of Watanabe (2001) for steps 8, 9, 10, and
11. Following Watanabe and Omori (2004), we employ a multi-move sampler in step 16. The
procedures are described in detail in the Appendix.

5 Empirical analysis

5.1 Available data and estimation procedure

We apply the MSDF-SVt model to monthly coincident indicators for the period January 1985
to December 2014 obtained from the database of the ESRI, because we limit the CI’s selection
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of time-varying variables to those for which data are available over the entire study period.
In related literature on business trends using Japanese data sets, Fukuda and Onodera (2001)
estimated the CI using two data sets: (i) index of industrial production (IIPP), large industrial
power consumption (LIPC), index of non-scheduled worked hours (NWH), RSV, effective job
offer rate (EJOR); and (ii) IIPP, index of producers’ shipments (IIPS), index of operating rate6,
NWH, index of sales in small and medium sized enterprises (SME). However, they applied
the dynamic factor framework to the data sets. Watanabe (2003) examined data sets with
poduction-related variables. Hayashida and Hewings (2009) used IIPP, LIPC, RSV, and EJOR
to estimate the regional business cycles with the MSDF framework. Our analysis uses the 11
variables in Table 1 to estimate the model, as in the ESRI approach, since the computational
cost of estimating the model is not high. We transform the data into growth rates in the same
way as in Section 2. Moreover, we use the growth rate with outlier replacement in (1). We
estimate the MSDF-SVt model using the both data sets.

For the prior distributions, we set the hyper-parameters as follows:

µ ∼ N
([

−1
1

]
,

[
10 0
0 10

])
I[µ(0) < µ(1)], γi ∼ N (0, 10),

ψi + 1

2
∼ Beta(1, 1),

ϕ+ 1

2
∼ Beta(1, 1), p0 ∼ Beta(9, 9), p1 ∼ Beta(9, 9),

σ2i ∼ IG
(
6

2
,
4

2

)
, νi ∼ G(1.2, 0.03)I[νi > 2], νf ∼ G(1.2, 0.03)I[νf > 2],

β + 1

2
∼ Beta(2, 1), ξ2 ∼ IG

(
6

2
,
4

2

)
,

The beta prior distributions for (ψi + 1)/2 and (β + 1)/2 imply that the mean and standard
deviation are (0.5, 0.29) and (0.67, 0.06), respectively. The mean and standard deviations of
the gamma and inverse gamma priors are (40, 36.51) and (1, 1), respectively. We perform the
MCMC procedure by generating 30, 000 draws in a single sample path and discard the first
15, 000 draws as the initial burn-in. All the results in this study are calculated using Ox version
6.2 (Doornik, 2006).

5.2 Parameter estimates

The MSDF-SVt models are estimated for both the unadjusted and outlier-adjusted data. First,
we report the results of the parameter estimation for the MSDF-SVt model using the unadjusted
data. Tables 4 and 5 summarize the estimates for the MSDF-SVt model, where Mean, Stdev,
2.5% (97.5%) CI, CD, and IF represent the posterior mean, the standard deviation, 2.5% (97.5%)
credible intervals, Geweke’s convergence diagnostics7, and inefficiency factor8, respectively.

6The index of producers’ shipment of durable consumer goods is used instead of the index of operating rates
from November 2011.

7CD represents the p-value based on the test statistic on the difference between two sample means (i.e., dividing
all the generated random draws into three parts, we compute two sample means from the first 10% and last 50% of
the random draws), where the test statistics are asymptotically distributed as standard normal random variables.
We confirm that the random draws generated by MCMC do not converge to the random draws generated from
the target distribution when CE is less than 0.01 (see Geweke, 1992 for a detailed discussion of CD).

8The inefficiency factor, which is an index that measures how well the chain mixes, as proposed by Chib (2001),
is defined as

IF = 1 + 2

∞∑
l=1

ρ̂l,

where ρ̂l denotes the sample autocorrelation at lag l. It is the ratio of the numerical variance of the sample
posterior mean to the variance of the sample mean from the hypothetical uncorrelated draws.
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We focus on the estimated results of the factor equation in equations (4), (7), and (8) in
Table 4. The posterior means of µ(0) and µ(1) are −0.962 and 0.322, respectively. The 95%
credible intervals of those parameters do not include zero, providing evidence of the division of
the business cycle into two separate phases. The posterior mean of ϕ is −0.256 and its 95%
credible interval includes 0. This implies that the autocorrelation in ct can be explained by
both the switch in its mean and the past value, ct−1. The result that the posterior mean of
p0 is less than that of p1 implies the average duration of a recession is shorter than that of a
boom. The posterior mean of νf is 7.111, which implies that the estimated business conditions
followed heavy-tailed distribution, which have higher kurtosis than that of a normal distribution.
The posterior mean of β is 0.742, indicating relatively high volatility clustering that shocks to
volatility are persistent.

Table 5 summarizes the estimated parameters of the idiosyncratic component. The 95%
credible intervals of ψ other than the LIPC and NSWH do not include zero. These idiosyncratic
components are explained by the past ei,t−1. In particular, the posterior mean of ψ in operating
profits (OP) and EJOR is over 0.7, denoting that these indicators have high positive autocorre-
lation. The posterior means of ν other than NWH are less than 10. Since the degrees of freedom
in the IIPP, IIPS, and OP are close to 2, we confirm that these idiosyncratic components follow
a leptokurtic distribution.

Tables 6 and 7 summarize the estimated results using the adjusted data set. Because of the
elimination of outliers, the posterior mean of νf is 31.418, indicating that the factor equation
follows a normal distribution. In the same way, most degrees of freedom in the idiosyncratic
equation increase by more than those using the unadjusted data set. Consequently, the influence
of the outlier adjustment is revealed in the estimated degrees of freedom.

5.3 Estimated composite index and cycle turning points

Figure 5 depicts the posterior mean and 95% credible interval of the growth rate of the CI,
estimated using the MSDF-SVt model and the unadjusted data set jointly with the growth rate
of the CI without outlier replacement announced by the ESRI. Other than the period of the
Great East Japan Earthquake in 2011, the 95% credible interval include the CI of the ESRI.

Figure 6 depicts the posterior mean based on unadjusted data and adjusted data, and the
CI of the ESRI. There almost is no difference between the CI estimated by both data sets.
However, the estimated CI using the adjusted data underestimates the sharp decline after the
financial crisis when compared with the unadjusted data. With regard to estimating business
trends, the influence of the lack of information on outliers is evident.

Figure 7 depicts the estimated recession probabilities using both data sets. For reference
purposes, the figures include shaded areas to indicate periods of a national recession regime
from peak to trough, as determined by the ESRI. The posterior probability of a recession 1− s∗t
is calculated using the posterior mean of the state variable, s∗t for t = 1, . . . , T . The figure shows
that the recession probabilities based on unadjusted data are in close agreement with the ESRI
reference cycle after 2000, although the MSDF-SVt model does not estimate those appropriately
during the period from the 1980s through the 1990s. In this paper, we estimate the business
cycle turning points as follows. We define t as a peak when 1− s∗t−1 < 0.5 and 1− s∗t > 0.5, and
as a trough when 1 − s∗t−1 > 0.5 and 1 − s∗t < 0.5. Table 8 shows the results. After 2000, the
differences between the data on turning points of the ESRI and those using the unadjusted data
set become less than three months. Compared with the results of the adjusted data, it seems that
the estimated turning points based on the unadjusted data are more favorable. In summary, in
terms of estimating business conditions and cycle turning points, since the adjustment reduces
the depth of a recession, using data without outlier replacement is preferable to using adjusted
data.
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5.4 Shock decomposition

Figure 8 depicts the time series of estimated ωt (top) and exp
(
ht
2

)
(bottom) for t = 1, . . . , T .

Our model is able to estimate the shocks to business conditions, and decomposes those into
unexpected shocks and conditional expected shocks. During the period of the financial crisis,
the posterior means of i.i.d. shocks are larger than the others. In contrast, we confirm that the
clustering shocks tend to be low in a recession. The Great East Japan Earthquake in 2011 was
not a shock derived from an economic recession and did not cause a recession. Therefore, it is
shown that the impact of the financial crisis in mid-2008 was substantial and caused an economic
crisis associated with a depression. Moreover, these results imply that economic recessions are
caused by unexpected shocks, and that it is difficult to predict recessions, as Hamilton (2011)
concluded.

Figure 9 depicts the time series of estimated λit. The shocks of IIPP, IIPS, LIPC, and PSDC
related to industrial productivity are substantial during the Great East Japan Earthquake in
2011. The impact of the disaster on business conditions and cycles is slight, and is a temporal
idiosyncratic shock. This must be why the posterior means of the CI estimated using our model
are not close to those of the CI of the ESRI during this period. The shocks of the NWH, IPSI,
and OP are largest in terms of turning points from economic recession to recovery in 2009,
indicating the immediate recovery of the economy from the recession caused investment and
working hours to increase in terms of uncertainty. Moreover, the shocks of the RSV and WSV
related to commerce tend to be large when a consumption tax started and increased9. Thus, it
may be difficult to forecast the growth of retail sales and wholesale sales data.

6 Concluding remarks

This study tracks the growth rates of business fluctuations and cycles in Japan by applying the
MSDF model framework and coincident economic indicators from February 1985 to December
2014. Moreover, we use two data sets, namely outlier-adjusted data and raw data, and analyze
how omitting the outlier affects estimating the business conditions and cycles. We extend the
MSDF model by incorporating with a heavy-tailed distribution in the idiosyncratic equations
and the factor equation, along with an SV process in the factor equation. From the empirical
results of the Bayesian Markov chain Monte Carlo method, the main findings are as follows.
From the estimated degrees of freedom in the factor and idiosyncratic equations, both the factor
and idiosyncratic components have fat-tail error distributions. Compared with the results using
the data with outlier replacement, the business conditions and recession probabilities estimated
without replacing the outliers are close to those published by the ESRI. Moreover, the results
of the shock decomposition show that the financial crisis is caused by unexpected shocks. It is
also shown that the Great East Japan Earthquake was derive from idiosyncratic noise and did
not cause a recession. When samples include large shocks, outlier replacement for each macro
economic variable is not desirable, and we should use econometric models with heavy-tailed
error and stochastic volatility processes.

Finally, we state some remaining issues. First, we do not consider the correlation among the
idiosyncratic components. Here, we should use a collapsed dynamic factor analysis applied by
Bräusing and Koopman (2014). Second, real GDP also is a key indicator to measure business
conditions and cycles. Although real GDP is a quarterly data set, Mariano and Murasawa (2003)
and Aruoba et al.(2009) estimated the coincident index using a dynamic factor framework by
considering the data at mixed frequencies, such as monthly and quarterly data series. Third,
we should also use skewed distributions, such as the generalized hyperbolic skew Student’s t-

9The Japanese Government approved consumption tax law in 1988 and carried it out from April 1989. The
consumption tax was increased to 5% from 3% in April 1997 and increased again to 8% in April 2014.
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distribution and other error distributions (Aas, 2005; Ascari et al., 2015; Nakajima, 2015).
Fourth, our model is capable of capturing the common trend, shock, and idiosyncratic shock.
Thus, it would be interesting to estimate the dynamics of a global recession and country-specific
noise, for example EuroCoin (Altissimo et al., 2001). These topics will be discussed in our future
research. However, it is important to know the properties of the business conditions and cycles if
a sample includes large shocks, and we think that, in this respect, our empirical results represent
an interesting step.
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Table 1: Variables used by the ESRI to construct the composite index, and abbreviations

Abbreviation Official name
1 IIPP Index of Industrial Production (Mining and Manufacturing)
2 IIPS Index of Producers’ Shipments (Producer Goods for Mining and Manufactur-

ing)
3 LIPC Large Industrial Power Consumption
4 PSDC Index of Producers’ Shipment of Durable Consumer Goods
5 NWH Index of Non-Scheduled Worked Hours (Industries Covered)
6 IPSI Index of Producers’ Shipment (Investment Goods Excluding Transport Equip-

ments)
7 RSV Retail Sales Value (Change From Previous Year)
8 WSV Wholesale Sales Value (Change From Previous Year)
9 OP Operating Profits (All Industries)
10 SME Index of Sales in Small and Medium-Sized Enterprises (Manufacturing)
11 EJOR Effective Job Offer Rate (Excluding New School Graduates)
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Table 2: Descriptive statistics of growth rates of coincident indicators

Mean SD Skew Kurt JB LB(10) LB2(10)

IIPP 0.043 1.986 −2.801 24.151 7161.25 13.20 19.93
(0.105)

IIPS 0.122 2.082 −2.336 17.153 3322.67 47.97 87.40
(0.110)

LIPC 0.074 1.346 −2.751 21.230 5424.25 21.73 45.75
(0.071)

PSDC 0.028 4.550 −0.896 17.987 3407.85 15.41 171.13
(0.240)

NWH −0.033 1.272 −0.856 6.713 250.12 75.79 172.99
(0.067)

IPSI 0.016 2.464 −0.330 5.204 79.16 45.02 21.23
(0.130)

RSV −0.015 2.551 −0.715 13.569 1701.59 84.20 36.38
(0.135)

WSV −0.021 2.909 −0.236 5.238 78.26 62.15 32.04
(0.154)

OP 0.181 4.967 −0.937 24.225 6791.09 231.47 816.03
(0.262)

SME −0.021 1.610 −0.381 4.676 50.66 28.48 57.65
(0.085)

EJOR 0.128 1.818 −0.705 4.243 52.87 1084.95 283.05
(0.096)

Note: The numbers in parentheses are standard errors. SD, Skew, Kurt, and JB mean standard
deviation, skewness, kurtosis, and the Jarque–Bera statistics, which test the null hypothesis of
normality, respectively. LB(10) is the Ljung–Box statistics proposed by Diebold (1988) to test
the null hypothesis of no autocorrelation up to 10 lags. LB2(10) is LB statistics of squared growth
rate.
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Table 3: Descriptive statistics of growth rates of coincident indicators with outlier replacement

Mean SD Skew Kurt JB LB(10) LB2(10)

IIPP 0.124 1.518 −0.199 3.330 4.01 43.15 90.82
(0.080)

IIPS 0.201 1.548 −0.207 3.061 2.61 41.44 162.05
(0.082)

LIPC 0.136 0.983 −0.275 3.325 6.12 21.41 57.51
(0.052)

PSDC 0.065 3.161 −0.090 2.771 1.27 28.75 54.92
(0.167)

NWH −0.007 1.174 −0.107 3.184 1.19 73.10 74.34
(0.062)

IPSI 0.032 2.251 −0.157 2.925 1.55 45.67 36.48
(0.119)

RSV 0.006 1.894 −0.029 3.072 0.13 70.85 52.29
(0.100)

WSV −0.006 2.703 −0.078 3.175 0.83 65.76 39.44
(0.143)

OP 0.270 2.457 −0.317 3.203 6.62 297.45 631.73
(0.130)

SME 0.004 1.452 −0.091 3.181 0.99 39.78 50.51
(0.077)

EJOR 0.150 1.720 −0.477 2.960 13.63 1123.89 395.81
(0.091)

Note: The numbers in parentheses are standard errors. SD, Skew, Kurt, and JB mean standard
deviation, skewness, kurtosis, and the Jarque–Bera statistics, which test the null hypothesis of
normality, respectively. LB(10) is the Ljung–Box statistics proposed by Diebold (1988) to test
the null hypothesis of no autocorrelation up to 10 lags. LB2(10) is LB statistics of squared growth
rate.

Table 4: Estimation results for the factor equation using unadjusted data

Parameter Mean SD 95%CI CD IF

µ(0) −0.962 0.667 [−1.939, −0.445] 0.31 224.15

µ(1) 0.322 0.076 [0.169, 0.473] 0.23 33.05
ϕ −0.256 0.080 [−0.403, −0.087] 0.78 27.91
νf 7.111 2.583 [4.394, 11.925] 0.44 223.03
p0 0.825 0.077 [0.636, 0.934] 0.37 23.84
p1 0.952 0.023 [0.897, 0.987] 0.56 13.00
β 0.742 0.037 [0.670, 0.815] 0.71 0.68
ξ2 0.223 0.016 [0.193, 0.256] 0.13 1.11

Note: Mean, SD, 95%CI, CD, and IF represent the posterior mean, the standard devia-
tion, 95% credible interval, p-value of Geweke’s convergence diagnostics, and inefficiency
factor, respectively.
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Table 5: Estimation results for the idiosyncratic equation using unadjusted data

Variable Parameter Mean SD 95%CI CD IF

IIPP γ 1.233 0.088 [1.067, 1.416] 0.61 67.61
ψ −0.207 0.069 [−0.359, −0.089] 0.79 26.74
σ2 0.117 0.027 [0.072, 0.176] 0.91 19.18
ν 2.474 0.388 [2.020, 3.477] 0.29 12.81

IIPS γ 1.262 0.095 [1.091, 1.460] 0.70 57.01
ψ 0.206 0.069 [0.062, 0.332] 0.47 18.64
σ2 0.209 0.044 [0.135, 0.305] 0.48 20.33
ν 2.695 0.498 [2.043, 3.945] 0.46 27.22

LIPC γ 0.408 0.062 [0.291, 0.536] 0.87 16.77
ψ −0.109 0.063 [−0.226, 0.018] 0.36 5.34
σ2 0.545 0.073 [0.418, 0.700] 0.35 13.35
ν 3.755 0.813 [2.544, 5.674] 0.61 18.85

PSDC γ 1.704 0.171 [1.395, 2.064] 0.62 26.52
ψ −0.306 0.057 [−0.419, −0.194] 0.41 2.61
σ2 3.885 0.519 [2.958, 4.995] 0.81 12.39
ν 3.12 0.524 [2.259, 4.311] 0.69 17.62

NWH γ 0.537 0.079 [0.380, 0.688] 0.56 55.63
ψ −0.121 0.077 [−0.266, 0.033] 0.33 24.46
σ2 1.023 0.124 [0.779, 1.267] 0.94 107.65
ν 21.178 22.877 [5.158, 84.915] 0.58 201.99

IPSI γ 1.078 0.107 [0.879, 1.300] 0.88 34.43
ψ −0.341 0.05 [−0.438, −0.244] 0.11 5.46
σ2 1.947 0.289 [1.436, 2.571] 0.07 22.69
ν 4.268 1.138 [2.677, 7.107] 0.03 30.16

RSV γ 0.260 0.068 [0.128, 0.397] 0.86 8.27
ψ −0.367 0.045 [−0.456, −0.282] 0.12 5.11
σ2 1.703 0.219 [1.309, 2.167] 0.98 8.71
ν 2.994 0.486 [2.205, 4.091] 0.25 10.46

WSV γ 0.870 0.112 [0.663, 1.101] 0.82 23.52
ψ −0.298 0.05 [−0.396, −0.200] 0.20 1.98
σ2 4.560 0.58 [3.499, 5.777] 0.75 36.32
ν 8.769 4.574 [4.056, 20.972] 0.14 80.23

OP γ 0.000 0.011 [−0.022, 0.021] 0.51 1.25
ψ 0.979 0.010 [0.960, 0.997] 0.42 7.52
σ2 0.090 0.019 [0.059, 0.133] 0.51 42.52
ν 2.093 0.019 [2.020, 2.099] 0.04 762.51

SME γ 0.878 0.073 [0.739, 1.027] 0.80 46.76
ψ −0.367 0.055 [−0.473, −0.258] 0.37 5.44
σ2 0.365 0.065 [0.255, 0.504] 0.90 23.68
ν 2.888 0.591 [2.078, 4.294] 0.95 28.46

EJOR γ 0.056 0.042 [−0.025, 0.140] 0.91 2.60
ψ 0.761 0.036 [0.691, 0.831] 0.01 1.80
σ2 0.953 0.122 [0.739, 1.21] 0.01 18.00
ν 5.692 2.222 [3.348, 10.099] 0.08 40.92

Note: Mean, SD, 95%CI, CD, and IF represent the posterior mean, the standard devia-
tion, 95% credible interval, p-value of Geweke’s convergence diagnostics, and inefficiency
factor, respectively.
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Table 6: Estimation results for the factor equation using adjusted data

Parameter Mean SD 95%CI CD IF

µ(0) −2.379 0.360 [−3.084, −1.670] 0.99 37.27

µ(1) 0.350 0.081 [0.203, 0.521] 0.36 21.66
ϕ −0.133 0.084 [−0.289, 0.040] 0.99 13.69
νf 31.418 5.622 [21.501, 43.427] 0.58 23.29
p0 0.608 0.119 [0.367, 0.820] 0.89 18.82
p1 0.933 0.027 [0.871, 0.972] 0.80 23.03
β 0.742 0.036 [0.671, 0.812] 0.52 0.57
ξ2 0.223 0.017 [0.192, 0.258] 0.03 1.15

Note: Mean, SD, 95%CI, CD, and IF represent the posterior mean, the standard devia-
tion, 95% credible interval, p-value of Geweke’s convergence diagnostics, and inefficiency
factor, respectively.
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Table 7: Estimation results for the idiosyncratic equation using adjusted data

Variable Parameter Mean SD 95%CI CD IF

IIPP γ 0.898 0.058 [0.784, 1.014] 0.48 44.78
ψ −0.234 0.087 [−0.396, −0.053] 0.53 15.35
σ2 0.114 0.027 [0.069, 0.175] 0.46 22.25
ν 2.447 0.393 [2.018, 3.420] 0.44 18.65

IIPS γ 0.868 0.058 [0.760, 0.984] 0.53 39.65
ψ 0.101 0.062 [−0.021, 0.221] 0.57 6.43
σ2 0.232 0.044 [0.157, 0.330] 0.32 15.59
ν 2.580 0.434 [2.033, 3.665] 0.32 19.94

LIPC γ 0.285 0.039 [0.210, 0.364] 0.16 11.34
ψ −0.048 0.058 [−0.162, 0.066] 0.28 3.27
σ2 0.704 0.071 [0.566, 0.845] 0.10 61.45
ν 32.590 25.460 [7.191, 100.051] 0.23 129.97

PSDC γ 1.182 0.117 [0.960, 1.418] 0.48 22.39
ψ −0.135 0.061 [−0.252, −0.018] 0.47 8.39
σ2 4.588 0.644 [3.473, 5.983] 0.88 51.75
ν 6.466 2.771 [3.435, 13.851] 0.89 70.65

NWH γ 0.334 0.058 [0.221, 0.452] 0.50 11.23
ψ −0.041 0.071 [−0.179, 0.100] 0.03 4.15
σ2 1.018 0.107 [0.813, 1.231] 0.00 45.21
ν 24.365 22.377 [6.672, 87.060] 0.06 140.98

IPSI γ 0.937 0.082 [0.778, 1.102] 0.44 19.40
ψ −0.267 0.056 [−0.372, −0.154] 0.47 4.03
σ2 1.948 0.290 [1.436, 2.575] 0.63 16.90
ν 5.056 1.635 [2.950, 9.325] 0.96 37.44

RSV γ 0.248 0.066 [0.120, 0.379] 0.19 4.13
ψ −0.264 0.058 [−0.377, −0.150] 0.63 19.21
σ2 2.471 0.319 [1.861, 3.102] 0.32 62.45
ν 15.377 13.131 [4.763, 52.987] 0.03 137.74

WSV γ 0.736 0.098 [0.549, 0.934] 0.72 11.49
ψ −0.268 0.052 [−0.370, −0.165] 0.07 1.47
σ2 4.952 0.489 [4.007, 5.935] 0.04 32.61
ν 30.840 23.537 [7.533, 96.359] 0.00 156.17

OP γ 0.002 0.005 [−0.007, 0.011] 0.92 1.30
ψ 0.995 0.003 [0.988, 1.000] 0.72 1.25
σ2 0.023 0.005 [0.015, 0.033] 0.59 8.21
ν 2.140 0.000 [2.140, 2.140] 0.01 1098.75

SME γ 0.717 0.054 [0.614, 0.823] 0.32 34.65
ψ −0.287 0.059 [−0.403, −0.172] 0.07 4.94
σ2 0.290 0.051 [0.202, 0.399] 0.91 10.95
ν 2.666 0.459 [2.041, 3.761] 0.87 14.95

EJOR γ 0.046 0.034 [−0.020, 0.114] 0.61 2.69
ψ 0.783 0.036 [0.712, 0.853] 0.28 3.40
σ2 0.920 0.110 [0.718, 1.151] 0.82 17.09
ν 7.032 2.442 [3.853, 13.284] 0.88 36.00

Note: Mean, SD, 95%CI, CD, and IF represent the posterior mean, the standard devia-
tion, 95% credible interval, p-value of Geweke’s convergence diagnostics, and inefficiency
factor, respectively.
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Table 8: Business cycle turning points

ESRI Unadjusted data Adjusted data

Peak

85/06 − −
91/02 91/10 92/03
97/05 97/09 98/02
00/10 01/01 01/01
08/02 08/03 08/05
12/04 12/04 12/05

Trough

86/11 − −
93/10 93/1 92/12
99/01 98/09 98/04
02/01 01/12 01/10
09/03 09/04 09/04
− 12/12 12/10
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Figure 1: Time series plots of CI (1985/1 – 2014/12)

Note: Raw data (top) and growth rate by log-difference multiplied by 100 (bottom). Dotted and solid
lines mean CI with and without outlier replacement, respectively. The shaded bars indicate recessions
reported by the ESRI.
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Figure 2: Time series plots of coincident economic indicators (1985/1– 2014/12)

Note: The shaded bars indicate recessions at the national level reported by the ESRI.
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Figure 3: Growth rate of coincident indicators (1985/02– 2014/12)

Note: The shaded bars indicate recessions at the national level reported by the ESRI.
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Figure 4: Growth rate of coincident indicators with outlier replacement (1985/02– 2014/12)

Note: The shaded bars indicate recessions at the national level reported by the ESRI.
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Figure 5: Estimated business conditions using unadjusted data

Note: Dotted, long dash, and solid line denote the posterior means, 2.5% (97.5%) credible interval, and
CI without outlier replacement, respectively.
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Figure 6: Comparison of posterior means using unadjusted data and adjusted data

Note: Dotted, long dash, and solid line denote the posterior means of the unadjusted data and adjusted
data, and CI without outlier replacement, respectively.
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Figure 7: Recession probabilities

Note: Solid line and long dash line denote the posterior recession probabilities using unadjusted data
and adjusted data, respectively. The shaded bars indicate recessions at the national level reported by
the ESRI.
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Figure 8: Estimated i.i.d. shocks and clustering shocks

Note: i.i.d. shocks (top) and clustering shocks (bottom) means estimated as
√
ωt and exp

(
ht
2

)
, respec-

tively.
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Figure 9: Estimated idiosyncratic shock

Note: Idiosyncratic shock mean estimated
√
λit.
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A Sampling algorithm for parameters

A.1 Sampling γi

Let ∆(ψi) = 1− ψiL, where L denotes a lag operator, and ψ∗
i = (1− ψ2

i )
1
2 . Given c and s, the

equation (3) can be rewritten as

ȳi = x̄iγi +
√
λiϵi,

where ȳi = (ψ∗
i yi1,∆(ψi)yi2, . . . ,∆(ψi)yiT )

′, x̄i = (ψ∗
i c1,∆(ψi)c2, . . . ,∆(ψi)cT )

′, λi = diag(λi1, . . . , λT ),
ϵi = (ϵ1i, . . . , ϵTi)

′. Thus, the full conditional distribution of γi is as follows:

γi|θ−γi , ϑ, y ∼ N (µ̂γi , σ̂
2
γi), (12)

where µ̂γi = σ̂2γi(σ
−2
i x̄′

iλ
−1
i ȳ + σ−2

γ0 γ0) and σ̂
2
γi = (σ−2

i x̄′
iλ

−1
i x̄i + σ−2

γ0 )
−1.

A.2 Sampling ψi and σ2
i

For sampling parameter ψi, we employ the Metropolis-Hastings algorithm proposed by Chib
and Greenberg (1995). The full conditional distribution of ψi is given by

π(ψi|θ−ψi , ϑ, y) ∝ gψ(ψi)

T∏
t=2

exp

[
−(zit − ψizi,t−1)

2

2λitσ2i

]
,

where

gψ(ψi) = (1 + ψi)
aψ,i−1(1− ψi)

bψ,i−1ψ∗
i exp

[
−(ψ∗

i zi1)
2

2λi1σ2i

]
.

It is difficult to directly draw the parameter. We generate the value from the following candidate
distribution:

ψi|θ−ψi , ϑ, y ∼ T N |ψi|<1(µ̂ψi , σ̂
2
ψi
),

where

µ̂ψi = σ̂−2
ψi

T∑
t=2

zitzi,t−1

λit
, and σ̂2ψi =

σ2i∑T
t=2

z2i,t−1

λit

.

Let ψoldi be the previous value. Then, we draw a candidate ψnewi from N (µ̂ψi , σ̂
2
ψi
), truncated

on (−1, 1), in order to satisfy the stationary condition, and accept it with probability

α(ψoldi , ψnewi ) = min

[
gψ(ψ

new
i )

gψ(ψ
old
i )

, 1

]
.

Next, the full conditional distribution of σ2i is as follows:

σ2i |θ−σ2
i
, ϑ, y ∼ IG

(
τ̂i
2
,
δ̂i
2

)
,

where τ̂i = τ0i + T and λ̂i =
∑T

t=1
e2it
λit

+ δ0i, with

eit =

{
ψ∗
i zi1 (t = 1)

zit − ψizi,t−1 (t > 1)
.

31



A.3 Sampling c

We show the state space representation of the model for drawing the latent variable c. Let
∆yit = yit − ψiyi,t−1, for i = 1, . . . , n, and ∆yt = (∆y1t, . . . ,∆ynt)

′ and σ2ht = exp(ht). Then,
the model can be represented as

∆yt = Γαt + ϵt, ϵt ∼ N (0,Ht), (13)

αt = mt +Tαt−1 +Gtηt, ηt ∼ N (0, I2), (14)

where I2 denotes 2× 2 unit matrix, and Γ, αt, Ht, mt, T, and Gt are given by

Γ =

 γ1 −γ1ψ1
...

...
γn −γnψn

 , αt =

[
ct
ct−1

]
, Ht = diag(λ1tσ

2
1, . . . , λntσ

2
n),

mt =

[
µt − ϕµt−1

0

]
, T =

[
ϕ 0
1 0

]
, Gt =

[ √
ωtσ2ht 0

0 0

]
.

Since equations (13) and (14) constitute the linear Gaussian state space mode, we can sample c
using the efficient simulation smoother (Durbin and Koopman, 2002).

A.4 Sampling µ

Let ∆(ϕ) = 1−ϕL, ϕ∗ = (1−ϕ2)
1
2 , and x̃ = (1−st, st). Given c and s, the equation is rewritten

as:

ỹ = x̃µ+ ω
1
2η,

where ỹ = (ϕ∗c1,∆(ϕ)c2, . . . ,∆(ϕ)cT )
′, x̃ = (ϕ∗x′

1,∆(ϕ)x′
2, . . . ,∆(ϕ)x′

T )
′, ω = diag(ω1, . . . , ωT ),

and η = (η1, . . . , ηT )
′. The full conditional distribution of µ can be obtained as

µ|θ−µ, ϑ, y ∼ N (µ̂, Σ̂µ)I[µ
(0) < µ(1)],

where µ̂ = Σ̂µ(x̃
′ω−1ỹ +Σ−1

µ0µ0) and Σ̂µ = (x̃′ω−1x̃+Σ−1
µ0 )

−1. For sampling µ, if it does not

satisfy the inequality µ(0) < µ(1), the generated values are rejected and then sampled again.

A.5 Sampling ϕ

We employ the MH algorithm as in sampling ψi. Let ċt = ct−µt. The full conditional distribution
of ϕ is given by

π(ϕ|θ−ϕ, ϑ, y) ∝ gϕ(ϕ)

T∏
t=2

exp

[
−(ċt − ϕċt−1)

2

2ωtσ2ht

]
,

where

gϕ(ϕ) = (1 + ϕ)aϕ−1(1− ϕ)bϕ−1
√

1− ϕ2 exp

[
−(1− ϕ2)ċ21

2ω1σ2h1

]
.

We draw the proposal from the following candidate distribution

ϕ|θ−ϕ, ϑ, y ∼ T N |ϕ|<1(µ̂ϕ, σ̂
2
ϕ),
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where

µ̂ϕ =

∑T
t=2 ċtċt−1∑T
t=2

ċ2t−1

ωtσ2
ht

, and σ̂2ϕ =
1∑T

t=2

ċ2t−1

ωtσ2
ht

.

Let ϕold be the previous value. Then, we draw a candidate ϕnewi from N (µ̂ϕ, σ̂
2
ϕ), truncated on

(−1, 1), in order to satisfy the stationary condition, and accept it with probability

α(ϕold, ϕnew) = min

[
gϕ(ϕ

new)

gϕ(ϕold)
, 1

]
.

A.6 Sampling p

Following Watanabe (2014), we employ the acceptance rejection algorithm for sampling p0 and
p1. The full conditional distribution of p is following as:

π(p|θ−p, ϑ, y) ∝ (1− p0)
s1(1− p1)

1−s1

2− p0 − p1

× pι00+n00
0 (1− p0)

ι01+n01pι11+n11
1 (1− p1)

ι10+n10

= gp(p)× pι00+n00
0 (1− p0)

ι01+n01pι11+n11
1 (1− p1)

ι10+n10 ,

where nij means the number of transitions from state i to j. We sample a proposed value pnew0

and pnew1 from the following independent beta distribution:

pnew0 ∼ Beta(ι00 + n00, ι01 + n01), pnew1 ∼ Beta(ι11 + n11, ι10 + n10).

Since 0 < gp(p
new) < 1, we employ the MH step. Finally, we accept the proposed values with

probability

α(pold, pnew) = min

[
gp(p

new)

gp(pold)
, 1

]
.

A.7 Sampling s

For sampling s, we employ the multi-move sampler (Kim and Nelson, 1998, 1999). The joint
conditional distribution of s is as follows:

f(s|θ, ϑ−s, y) = f(sT |θ, ϑ−sT , y)
T−1∏
t=1

f(st|st+1, θ, ϑ−s, y), (15)

First, we sample sT , which is the first term on the right-hand side of equation (15). Given sT
sampled from sT−1, we can proceed backwards in time. Then, f(st|st+1, θ, ϑ−s, y) includes the
following:

f(st|st+1, θ, ϑ−s, y) ∝ f(st+1|st)f(st|θ, ϑ−s, y),

where f(st+1|st) means the transition probability. Next, f(st|θ, ϑ−s, y), for t = 1, . . . , T , is
calculated using Hamilton’s (1989) filter. sT is sampled from f(sT |θ, ϑ−s, y), and st is sampled
using sT and equation (16) backward in time.
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A.8 Sampling λit and νi

Given c, s, and ω, the full conditional distribution of λit is as follows:

λit|θ, ϑ−λit , y ∼ IG

(
âit
2
,
b̂it
2

)
.

where âit = νi + 1 and b̂it = νi + σ−2
i (zit − ψizi,t−1)

2.
Finally, the full conditional distribution of νi is given by

π(νi|λi) ∝ νA0−1 exp(−B0νi)
T∏
t=1

νi
2

νi
2

Γ
(
νi
2

)λ− νi
2
+1

it exp

(
− νi
2λit

)
, (16)

To sampling the degrees of freedom parameter, we employ the AR-MH algorithm extended by
Watanabe (2001). The AR-MH algorithm was proposed by Tierney (1994) (see also Chib and
Greenberg (1995) for details). This algorithm samples the parameter using the AR and MH
step. Suppose there is a candidate function h(νi) which can be directly sampled, and f(νi),
defined as the target distribution. Then, the AR step proceeds as follows:

1. Sample the candidate νi from h(νi) and u from the uniform distribution U [0, 1].

2. If u ≤ f(νi)
ch(νi)

, return νnewi = νi. Else, go to 1.

This step is repeated until the candidate draw is accepted. In this study, we utilize a normal
distribution as the candidate function. Let p∗(νi) denote p(νi|ω) with the constant subtracted,
and the log of p∗(νi) is given by

ln p∗(νi) =
T

2
νi ln

(νi
2

)
− T ln Γ

(νi
2

)
− Jiνi + (A0 − 1) ln(νi), (17)

where

Ji =
1

2

T∑
t=1

{
ln(λit) +

1

λit

}
+B0.

We apply the second-order Taylor expansion around νi = ν∗i to (17), which yields

ln p∗(νi) ≈ ln p∗(ν∗i ) + C ′
i(νi − ν∗i ) +

C ′′
i

2
(νi − ν∗i )

2

= h(νi),

where

C ′
i =

d ln p∗(νi)

dνi

∣∣∣∣
νi=ν∗i

=
T

2

{
ln
(νi
2

)
+ 1− ψ

(
ν∗i
2

)}
− Ji +

A0 − 1

ν∗i
,

C ′′
i =

d2 ln p∗(νi)

d2νf

∣∣∣∣
νi=ν∗i

=
T

2

{
1

νi
− 1

2
ψ′
(
ν∗i
2

)}
− A0 − 1

ν∗2i
,

with ψ(νi) and ψ
′(νi) denoting a digamma function defined by ψ(νi) =

d ln Γ(νi)
dνi

, and a trigamma

function defined by ψ′(νi) =
dψ(νi)
dνi

. Then, the normalized version of h(νi) has a normal density

with mean ν∗i −
C′
i

C′′
i
and variance − 1

C′′
i
.

Next, let the previous sampled value of νi be ν̄i. Then, the MH step proceeds as follows:

34



1. Calculate the acceptance probability q

• If p∗(ν̄i) < κh(ν̄i), then set q = 1;

• If p∗(ν̄i) ≥ κh(ν̄i) and p
∗(νnewi ) < κh(νnewi ), then set q =

κh(ν̄i)

p∗(ν̄i)
;

• If p∗(ν̄i) ≥ κh(ν̄i) and p
∗(νnewi ) ≥ κh(νnewi ),

then set q = min

[
p∗(νnewi )h(ν̄i)

p∗(ν̄i)h(νnewi )
, 1

]
;

2. Sample a value u from the uniform distribution U [0, 1].

3. If u ≤ q, return νi = νnewi . Else, return νi = ν̄i.

In this step, the candidate value is accepted with probability q, and otherwise rejected. If a
draw is rejected, the previously sampled value is sampled again. In the empirical analysis, we
set κ = 1.

A.9 Sampling ωt and νf

Since the full conditional distribution of ωt are mutually independent, it is straightforward to
sample ωt. Thus, the full conditional distribution of ωt are given as

η2t + νf − 2(
ht
2

)
ωt

∣∣∣∣∣ θ, ϑ−ωt , y ∼ χ2(νf + 1), t = 1, . . . , T.

Finally, we sample νf using the AR-MH algorithm, as in sampling νi.

A.10 Sampling β and ξ2

Given h, the full conditional distribution of β is given by

π(β|θ, ϑ−β, y) ∝ gβ(β)

T∏
t=2

exp

[
−(ht − βht−1)

2

2ξ2

]
,

where

gβ(β) = (1 + β)aβ−1(1− β2)bβ−1
√

1− β2 exp

[
−{(1− β2)h1}2

2ξ2

]
.

It is difficult to directly draw the parameter. We generate the value from the following candidate
distribution

β|θ−β, ϑ, y ∼ T N |β|<1(µ̂β, σ̂
2
β),

where

µ̂β = σ̂−2
β

T∑
t=2

htht−1, and σ̂
2
β =

ξ2∑T
t=2 h

2
t−1

.

Let βold be the previous value. Then, we draw a candidate βnew from N (µ̂β, σ̂
2
β), truncated on

(−1, 1), in order to satisfy the stationary condition, and accept it with probability

α(βold, βnew) = min

[
gβ(β

new)

gβ(βold)
, 1

]
.
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Next, the full conditional distribution of ξ2 is as follows:

ξ2|θ−ξ2 , ϑ, y ∼ IG

(
τ̂h
2
,
δ̂h
2

)
,

where τ̂h = τ0h + T and δ̂h =
∑T

t=1 e
2
ht + δ0h, with

eht =

{ √
1− β2h1 (t = 1)

ht − ψiht−1 (t > 1)
.

A.11 Sampling h

For sampling the latent variable h, we employ the multi-move sampler extended by Watanabe
and Omori (2004). First, we divide h into K + 1 blocks, (hkl−1

, . . . , hkl) for l = 1, . . . ,K + 1
with k0 = 0 and kK+1 = T . The K knots (k1, . . . , kK) are randomly drawn from

kj = int

[
T × j × Uj

K + 2

]
,

where Ul are independent uniforms in [0, 1] and “int” means the integer part. Following Pitt
and Shephard (1997), we draw the error term (ζkj−1

, . . . , ζkj−1) instead of (hki−1+1, . . . , hki) from
their full conditional distributions,

π(ηt−1, . . . , ηt+k−1|ht−1, ht+k+1, θ, ϑ−hki−1+1,...,hki
). (18)

Next, let kl−1 = t − 1, kl = t + k, and h(k) = {hj}t+kj=t−1. Then, we construct a candidate
distribution in order to sampling the error vectors. The log of the posterior density (18) is
described as follows:

log π(ζt−1, . . . , ζt+k|ht−1, ht+k+1, θ, ϑ−h(k), y)

= const. +
1

2ξ2

t+k∑
j=t

ζ2j −
1

2

t+k∑
j=t

{
hj +

e∗2j
ωj

exp(−hj)

}
− 1

2ξ2
(ht+k+1 − βht+k)

2,

where e∗j means the residual of equation (4). Then, we evaluate this logarithm of the posterior
density using the Taylor expansion of the log-likelihood,

l(hj) = −1

2
hj −

1

2

e∗2j
ωj

exp(−hj),

around the mode ĥj , as follows:

log π(ζt−1, . . . , ζt+k−1|θ, ϑ−h(k), y)

≈ const. +

t+k∑
j=t

{
l(ĥj) + l′(ĥj)(hj − ĥj) +

1

2
l′′(ĥj)(hj − ĥj)

2

}

+− 1

2

t+k∑
j=t

{
hj +

e∗2j
ωj

exp(−hj)

}
− 1

2ξ2
(ht+k+1 − βht+k)

2

≡ log gh(ζt−1, . . . , ζt+k−1),
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where

l′(ĥj) ≡ ∂l(ĥj)

∂hj
= −1

2
+

1

2

e∗2j
ωj

exp(−ĥj),

l′′(ĥj) ≡ ∂l(ĥj)

∂hj
= −1

2

e∗2j
ωj

exp(−ĥj).

We sample the error term from the posterior distribution with the simulation smoother. More-
over, we employ the AR-MH algorithm. Finally, in order to select the posterior mode ĥj , we
apply the Kalman filter and disturbance smoother (Watanabe and Omori, 2004).
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