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Abstract

This paper develops an endogenous growth model in which public

health infrastructure, specified as a stock, plays an important role in

economic growth. A notable feature of the model is that it employs

a non-separable utility function for consumption, leisure and the level

of public health. In addition, increasing the level of health infrastruc-

ture contributes to the production of goods through labor augmentation.

With these settings, our model is found to have a unique equilibrium

or multiple equilibria, depending on the magnitude of the intertemporal

elasticity of substitution. For the case of multiple equilibria, we nu-

merically study the ways to avoid the low-growth state in developing

countries. From this, we identify two feasible policy implications. The

results indicate that public health infrastructure has a vital role for the

development policies in low-income countries. Lastly, we show that there

are two possibilities in regards to the local dynamics of the model.

Keywords: Health infrastructure; Leisure; Multiple equilibria; Low-growth

state

JEL classification numbers: I15; I18; O11; O41
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1. Introduction

The provision of various public goods and services such as infrastructure

has long been considered as having a vital role in promoting economic growth,

in particular for developing countries. On the importance of public services

and public capital, Arrow and Kurz (1970) and Barro (1990) made early and

influential contributions, and subsequent theoretical and empirical studies have

expanded in many different directions.1

The present paper focuses on the effects of public health capital and in-

frastructure on the process of growth and development. In the past decade, a

number of researchers have given attention to the fact that good health is an

indispensable prerequisite for growth, whereas growth contributes a great deal

to good health.2 Within a variety of social infrastructures, therefore, the impor-

tance of health infrastructure cannot be overstated. Several empirical studies

confirm the fact that proxies for health are robust variables for explaining the

subsequent growth in a country, and thus support the above view on the im-

portance of health in economic development (Sala-i-Martin et al., 2004; Aghion

et al., 2011).

Agénor (2008) and Gupta and Barman (2010) have recently contributed two

important papers that directly examine the effects of health and its related fac-

tors on economic growth.3 Agénor (2008) extends Barro (1990) and separately

1In line with the literature, we use public capital and public infrastructure interchangeably

throughout the paper.
2In the modern context, we would say that the paper by van Zon and Muysken (2001) is

a pioneering study in this field of research. At the same time, theoretical studies have made

progress in step with developments in endogenous growth theory and intriguing empirical

studies have begun to appear. López-Casasnovas et al. (2005) and Garibaldi et al. (2010)

provide a glimpse of the developments in this area.
3Utilizing the framework of overlapping-generations (OLG), Bhattacharya and Qiao (2007)

and Varvarigos and Zakaria (2013) construct a growth model with public and private expendi-

tures on health. In these models, public expenditures complement private spending. Recently,

Agénor (2013) presented comprehensive research on public policy using the OLG models.
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incorporates health services (flow or stock) and infrastructure services into the

model. Therefore, this model investigates the relationship between health, in-

frastructure and growth, and derives implications for the allocation problem of

government investment between health and infrastructure.4 For our purposes,

the second model of Agénor (2008), which treats health as a stock variable, is es-

pecially important to consider. In this model, a unique steady-state equilibrium

satisfies saddle-path stability.

Gupta and Barman (2010) extend the model of Agénor (2008). By introduc-

ing environmental quality to the Agénor’s framework, they investigate optimal

fiscal policy in the steady-state equilibrium, and then clarify the dynamic prop-

erties of the equilibrium.5 Accordingly, the model exhibits local indeterminacy

if certain conditions on the dynamic system are satisfied, since the environment

and health stocks generate production externalities.

Raurich (2003) is also important to consider in the model specification.

Although public input is treated as a flow variable, it is embedded in both the

utility and production functions, and allows for an elastic labor supply.

On the basis of this avenue of research, we develop an endogenous growth

model with publicly provided health infrastructure, and examine its policy im-

plications and the properties of its equilibrium dynamics.6 The characteristics

4This paper has three key characteristics: (i) the production functions for final goods and

health services include public infrastructure spending; (ii) the level of health services is an

input in goods production, while at the same time health spending is an input in health

production; and (iii) the agent’s utility is affected by health service level.
5In comparison with Agénor (2008), beyond the environmental factor, the following three

points are worth noting: (i) the production function for final goods is essentially the same

as Agénor (2008), though it considers the absolute congestion effect on infrastructural input;

(ii) health capital (infrastructure) is accumulated through expenditure on health only; and

(iii) the utility function is composed of consumption only, for analytical simplicity.
6One of the notable features of the model is that it employs a non-separable utility function

between consumption, leisure and the level of public health infrastructure. In addition to

those above mentioned, our specification is similar to the one employed by Bennett and

Farmer (2000) and Fernández et al. (2004), among others.
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of our model structure relative to Agénor (2008), Gupta and Barman (2010),

Raurich (2003) and others are as follows. First, we specify public health infras-

tructure as a stock variable, unlike with Raurich (2003); thus, the production

function for final goods includes the health stock in a labor augmenting man-

ner.7 Second, in the model, health infrastructure evolves through government

health investment only, as in Gupta and Barman (2010). Third, the agent’s

utility function includes the leisure time fraction and exogenously given health

infrastructure levels, in line with Raurich (2003). The labor–leisure choice is

not considered in Agénor (2008) and Gupta and Barman (2010), but the in-

troduction of the choice is crucial for a dynamic general equilibrium analysis.

Fourth, we allow a larger value for the intertemporal elasticity of substitution,

which differs from previous studies in the literature, and is an important aspect

of our equilibrium properties.

We obtain several interesting results from the solution of the model. The

model has a unique steady-state equilibrium when there is a smaller value for

the intertemporal elasticity of substitution, while a larger value yields multiple

steady states. Therefore, the agent’s preference influences the number of steady-

state equilibria. In previous growth models with health infrastructure, little

attention has been given to the case of multiple equilibria; hence it seems that

our exploration makes a valuable contribution to the literature.

To achieve concrete policy implications, we experiment with numerical anal-

ysis for the analytical solution. Namely, we observe the effects on growth rates

by changing parameters (e.g., the preference, technology and policy parame-

ters).8 Compared with the case of a single steady state, there is a different

picture in the case of dual steady states. Moreover, in the experiment we take

a particular interest in identifying ways for developing countries to improve the

7As pointed out in Agénor (2008), making a distinction between public infrastructure and

health capital is essential; however, we do not differentiate these inputs for simplicity.
8Preference parameters in the utility function, such as the rate of time preference, are

called deep parameters.

5



inferior equilibrium in terms of growth rate, which are examined in detail. We

present specific policy solutions, with consideration given to their feasibility.

Lastly, the local dynamics properties of the model are investigated. Because

of the complexity of our dynamic system, we are forced to attempt an analysis

while employing some important assumptions. As a result, we show that there

are two possibilities for the local dynamics. The first is the case where the

equilibrium is locally saddle-path stable.9 The second is the case where the

equilibrium is locally indeterminate. In the present context, local indeterminacy

implies that there is a continuum of equilibrium paths converging to a given

steady state.10 Supplemental numerical computation implies that saddle-path

stability is likely to be found.

The rest of the paper is organized as follows. Section 2 presents the basic

framework of the model and its long-run equilibrium solution, and examines

the equilibrium properties. Section 3 presents numerical computations for the

theoretical results. In Section 4, we summarize the dynamic system and analyze

the local stability of the dynamic equilibrium. Section 5 provides concluding

remarks.

2. The model

2.1. Basic framework

In this section, we present a simple growth model that includes public health

infrastructure. One infinitely lived representative household derives utility from

consumption, C, leisure time, l, and the level of public health infrastructure,

H, in the macroeconomy.11 The household’s intertemporal utility is specified

9As noted before, the same result is obtained in Agénor (2008).
10A number of authors have examined the properties of equilibrium (path) indeterminacy

in neoclassical and endogenous economic growth models. Typical examples include Benhabib

and Perli (1994) and Mino (2001).
11For analytical simplicity, the overall population is always constant and normalized to

unity (L = 1) such that all variables become per capita amounts. The public health aspects

in this paper are discussed further in the next subsection.
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as ∫ +∞

0

e−ρtU(C(t), l(t), H(t))dt,

where ρ > 0 is the rate of time preference.12 The instantaneous utility is

assumed to be given by

U(C, l,H) =
(ClηHσ)1−θ − 1

1 − θ
, η > 0, σ > 0, θ > 0, (1)

where 1/θ is the elasticity of intertemporal substitution, and η and σ are the

weights of leisure and public health infrastructure in the household’s utility

function, respectively. Note that in a decentralized economy, H is an exogenous

variable; thus, the household maximizes its own utility ignoring the effect of

public health infrastructure. Therefore, the joint concavity condition imposed

on C and l is θ ≥ η/(1 + η).

The household is endowed with one unit of time that can be devoted to either

work or leisure (i.e., 1 − l is the unit of time devoted to work). Because the

government imposes a tax on total household income at a rate τ , the household’s

budget constraint without physical capital depreciation becomes

K̇ = (1 − τ)(rK + w(1 − l)H) − C, (2)

where K is physical capital, and r and w are the interest rate and the wage

rate, respectively.13 Here, it can be found that public health infrastructure,

H, boosts labor productivity, thus health is labor augmenting. The production

function of the representative firm is specified as the standard Cobb–Douglas

technology:

Y = Kα((1 − l)H)1−α, α ∈ (0, 1). (3)

Profit maximization yields

r = α
Y

K
(4)

and

w = (1 − α)
Y

(1 − l)H
. (5)

12From now on, we will suppress the time argument when not needed for clarity.
13As noted before, total labor force is normalized to unity.
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2.2. The evolution of public health infrastructure

The factor of health is one of the key elements in this study, and is specified as

public health infrastructure. Good health is indispensable to human life and is

of particular importance in developing countries. For each agent, public health

infrastructure is considered as social overhead capital, so it is appropriate that

the household takes H as an exogenous variable. Consequently, the government

bears the responsibility for health infrastructure provision.

In line with our specification, income tax revenue from the household is

devoted to the improvement of public health, thus H is treated as a stock

variable. Assuming that the government maintains a balanced budget at each

point in time (G = τY ) and all the tax revenue is associated with public health

expenditures, the accumulation of health infrastructure is determined by

Ḣ = δG = δτY = δτKα((1 − l)H)1−α, δ > 0, (6)

where δ is a technological efficiency parameter. A similar specification is of-

ten employed in the related literature, including Capolupo (2000), Gupta and

Barman (2010) and Hosoya (2012).

To sum up the specifications, there are two influential factors for agent’s

utility apart from consumption. The first is leisure activities; the second is

the provision of public health infrastructure. As leisure time decreases and

labor activities increase, income increases and the tax base is expanded. In

the macroeconomy, abundant tax revenue leads to the improvement of the in-

frastructure level. Although the provision of public health infrastructure is an

external factor for individual agents, this externality indirectly increases their

own utility levels.

2.3. Solution for the decentralized economy

The optimal solution for the decentralized economy is to choose at each mo-

ment in time the amount of consumption, {C}+∞
t=0 , the amount of physical cap-

ital, {K}+∞
t=0 , and time fractions allocated to production and leisure activities.
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Given budget constraint (2), the initial stock of physical capital K(0) = K0,

the factor prices r and w and fiscal policy variable τ , the household maximizes

the infinite stream of discounted instantaneous utility (1).

To solve the household’s optimization problem, we formulate the current-

value Hamiltonian, H:

H ≡ (ClηHσ)1−θ − 1

1 − θ
+ λ[(1 − τ)(rK + w(1 − l)H) − C],

where λ is the co-state variable associated with constraint (2). The first-order

necessary conditions are given by

(ClηHσ)1−θ

C
= λ, (7)

η(ClηHσ)1−θ

l
= λ(1 − τ)wH, (8)

(1 − τ)r − ρ = − λ̇

λ
, (9)

plus the usual transversality condition

lim
t→+∞

λ(t)K(t)e−ρt = 0. (10)

When the transversality condition (10) holds, the necessary conditions (7)–(9)

are also sufficient under resource constraint (2).

By log-differentiating (7) and applying (9), we obtain the Keynes–Ramsey

rule, taking account of the labor–leisure choice and the existence of public health

infrastructure:

Ċ

C
=

1

θ

(
(1 − τ)r − ρ + η(1 − θ)

l̇

l
+ σ(1 − θ)

Ḣ

H

)
. (11)

From (7) and (8), we arrive at

l

C
=

η

(1 − τ)wH
. (12)

An equilibrium solution for the decentralized economy is essentially charac-

terized by (11) and (12).14 From (11), we find that it is necessary to clarify

14Note that r and w are represented by (4) and (5).
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the dynamics of leisure time and public infrastructure. As for l̇/l, the following

equation can be derived by using (6) (see Appendix A):

l̇

l
=

Ċ

C
− α(1 − τ)(1 − l)1−α

(
K

H

)α−1

+ α
C

K
− α

l̇

1 − l
− (1 − α)

Ḣ

H
. (13)

Here, as for Ḣ/H, we simply use the transformed expression of (6). That is,

Ḣ

H
= δτ(1 − l)1−α

(
K

H

)α

. (14)

In view of (14) and the expression of r = α(1 − l)1−α(K/H)α−1, substituting

(13) into (11) yields:

(θ − η(1 − θ))
Ċ

C

= (1 − l)1−αZα

(
α(1 − τ)(1 − η(1 − θ))

Z
+ δτ(1 − θ)(σ − η(1 − α))

)
+ αη(1 − θ)

(
X − l̇

1 − l

)
− ρ, (15)

where X ≡ C/K and Z ≡ K/H.

2.4. Long-run steady-state equilibrium

We now proceed to characterize the long-run (steady-state) equilibrium of

the model. In our model, the long-run equilibrium is defined as follows:

Definitions 1. In the long-run steady-state equilibrium, C, K, H and Y grow

at the same constant growth rate and the time fraction variable l remains at a

constant value (i.e., l̇ = 0). Therefore, X and Z are also constant. Accordingly,

our notations of each steady-state value are as follows: Ċ/C = K̇/K = Ḣ/H =

Ẏ /Y = g, l = l∗, X = X∗ and Z = Z∗.

Applying the condition l̇ = 0, together with the above notations, (15) be-

comes

(θ − η(1 − θ))g

= (1 − l∗)1−α(Z∗)α

(
α(1 − τ)(1 − η(1 − θ))

Z∗ + δτ(1 − θ)(σ − η(1 − α))

)
+ αη(1 − θ)X∗ − ρ. (16)
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At the steady state, X∗ and Z∗ can be represented by the deep and tech-

nological parameters, l∗ and g. Using (13) or the accumulation equation for

physical capital, the consumption/physical capital ratio, X∗, is described by

the following equation:

X∗(α, τ, g, l∗, Z∗) = (1 − τ)(1 − l∗)1−α(Z∗)α−1 − g. (17)

On the other hand, the accumulation equation for public health infrastruc-

ture, (14), leads to the physical capital/public infrastructure ratio, Z∗. That

is,

Z∗(α, δ, τ, g, l∗) =

(
g

δτ(1 − l∗)1−α

) 1
α

. (18)

To obtain a positive X∗, the right-hand side of (17) must be positive.15 All

numerical analyses developed in this paper satisfy this condition.

Substituting (17) and (18) into (16), and then rearranging it, we get

α(1 − τ)

(
g

δτ(1 − l∗)

)α−1
α

= (θ − σ(1 − θ))g + ρ, (19)

where g = g∗, which satisfies (19), becomes the growth rate at the long-run equi-

librium for positive values of X∗.16 17 In the following, we begin by investigating

long-run equilibrium properties.

2.5. Equilibrium properties

To clarify the long-run equilibrium properties, we explore (19) in detail. Let

the left-hand side (LHS) and the right-hand side (RHS) of (19) be denoted as

15A detailed investigation of this point was conducted by Gaspar et al. (2014).
16The growth rate of the economy can be written as a function of six parameters and l∗:

g = f(θ, σ, ρ, α, δ, τ, l∗).
17If the agent has a logarithmic utility function (i.e., θ = 1), (19) is changed by

α(1 − τ)
(

g

δτ(1 − l∗)

)α−1
α

= g + ρ.
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Γ and Ψ, respectively:

Γ(g) ≡ α(1 − τ)

(
g

δτ(1 − l∗)

)α−1
α

, (20)

Ψ(g) ≡ (θ − σ(1 − θ))g + ρ, (21)

where both can be seen as a function of g. Now, we should check the func-

tional properties. On the one hand, from (20), we find that Γ(g) is a strictly

decreasing and strictly convex function of g, in view of the functional properties

limg→0 Γ(g) = +∞, limg→0 Γ′(g) = −∞, limg→+∞ Γ(g) = 0 and limg→+∞ Γ′(g) =

0. On the other hand, from (21), Ψ(g) is a simple linear function of g, but the

slope varies depending on the magnitude of θ. Specifically, there are three pos-

sibilities: first, when θ > σ/1 + σ, Ψ has a positive slope with intercept ρ > 0

in the relevant quadrant; second, when θ = σ/1 + σ, Ψ comes to a horizontal

line at ρ; and third, when θ < σ/1+σ, Ψ has a negative slope with intercept ρ.

According to the shapes of Γ and Ψ, we can state the following two propo-

sitions.

Proposition 1. When θ ≥ σ/(1 + σ) and θ ≥ η/(1 + η), there exists a unique

long-run equilibrium solution.

The latter condition guarantees joint concavity concerning consumption and

leisure time in the household’s utility function. For example, the case where

θ = 1 corresponds to this scenario. Since the Ψ function has a positive or zero

slope in the (g, Ψ)-plane, the equilibrium growth rate is uniquely determined.

Proposition 2. When η/(1 + η) ≤ θ < σ/(1 + σ), the emergence of multiple

(dual) long-run equilibria is possible.

To understand the statement of Proposition 2, we explore it further. Note

that, in the present case, the Ψ function has a negative slope in the (g, Ψ)-

plane. Consequently, (i) when the LHS (Γ) is located below the RHS (Ψ) over

the whole range of positive g, no solution exists; (ii) when the LHS is tangent

to the RHS, that is, Γ′(g∗) = Ψ′(g∗), a single solution exists; and (iii) when

12



the LHS is located above the RHS, two solutions exist. Case (iii) implies the

emergence of dual steady states where two long-run growth rates exist that

satisfy the optimality criteria. As might be expected, our current interest is the

last case.

Now, the reason for the emergence of multiple equilibria can be explained as

follows. Private agents (i.e., consumers and firms) in a decentralized economy

cannot know the evolution of public health infrastructure. Therefore, if agents

expect a high level of (productive) public health infrastructure, then they will

increase their physical capital. This leads to higher income and higher tax

revenue. Through these processes, a higher level of public health infrastructure

is actually supplied, which results in the high-growth equilibrium. On the other

hand, in the case where negative expectations are formed about the future level

of infrastructure, the economy arrives at the low-growth equilibrium because of

the poor level of public health provision.

On the basis of these observations, we will present several numerical com-

putations in a later section.

3. Numerical computations

In this section, we further study numerical simulations for the theoretical

results obtained in the previous analysis. Two theoretical possibilities are pre-

sented that depend on the deep parameter combinations. Let us begin with the

case in which the long-run steady-state growth rate is uniquely determined.

3.1. The case of a single steady state

As shown in Proposition 1, when a relatively small value for the intertem-

poral elasticity of substitution holds (i.e., θ > σ/(1 + σ)), the rate of economic

growth at the steady state is uniquely determined.

To satisfy the above condition for the preference parameters, we first set

θ = 1.2 and σ = 0.8. Following Stokey and Rebelo (1995), Gómez (2008) and
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others, the parameterization for θ can be considered reasonable. As for σ, we

can assume that it takes either a value less than one or greater than one. For

example, the seminal paper by Raurich (2003) employs 0.65–1.5 as the weight

for public goods in the utility function.18 Consequently, we test several cases.

For the rate of time preference, ρ, the elasticity of physical capital in the pro-

duction of goods, α, and the fraction of time devoted to leisure activities at

the steady state, l∗, well-known standard values in the literature are employed

(see, for example, Ladrón-de-Guevara et al., 1997; Ortigueira and Santos, 1997;

Greiner, 2008). The income tax rate, τ , essentially follows empirical evidence.19

The technological efficiency for the accumulation process of public health infras-

tructure, δ, is chosen so as to acquire the appropriate long-run growth rate in

light of long-run time series evidence.20 Our benchmark parameters are shown

in Table 1.

[Insert Table 1 around here]

[Insert Fig. 1 (caption: Benchmark case (single steady state))

around here]

Fig. 1 shows the benchmark case. In this case, the long-run growth rate is

1.4%; hence, it proves the validity of our assumed scenario in light of long-run

time series on per capita growth rate. To confirm the effects on growth rates

from a change in each parameter, we observe the sensitivity of the benchmark

18As explained in Section 1, the frameworks of the present model and Raurich (2003) are

similar in that they both include leisure and publicly provided goods.
19Due to the specification of (6), the tax rate τ can be seen as the ratio of public health

expenditure to GDP. According to the World Development Indicators 2012, averaged public

health expenditure (% of GDP) in 217 countries during 2000–2010 was 3.82%. Based on this

evidence, we set a suitable value.
20Incidentally, as a technology parameter for human capital formation through schooling

activities, the pioneering research by Lucas (1988) employed 0.05. Also, the recent paper by

Greiner (2008) set the parameter at 0.15.
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case.21 Roughly speaking, compared with the benchmark case, the changes in

τ and δ have a relatively significant influence on the growth rates. That is to

say that an increase in both parameters boosts economic growth.22 By these

observations, in the case in which the equilibrium is uniquely determined at

least, the government bears the responsibility of raising sufficient tax revenue

and implementing efficient provision processes to develop a good public health

environment. As will be clarified later, the same implication is true in the case

of multiple equilibria.

3.2. The case of dual steady states

In Proposition 2, we demonstrated that a relatively large value for the in-

tertemporal elasticity of substitution (i.e., η/(1 + η) ≤ θ < σ/(1 + σ)) yields

the possibility of multiple equilibria (dual steady states). As pointed out by

Ben-Gad (2012), a higher value of 1/θ has often been obtained in some recent

empirical studies including Hansen et al. (2007). In line with the single equi-

librium case, we first to attempt a benchmark simulation under the present

scenario. The benchmark parameters are listed in Table 2. To obtain econom-

ically meaningful and plausible dual steady states, we change some parameter

values from the previous single equilibrium case. The rate of time preference,

0.1, is higher than typical of values used in the literature; nevertheless, it is

a reasonable value. Park and Philippopoulos (2004), for instance, employ the

same value and Greiner and Hanusch (1998) adopt a value higher than 0.1. The

fraction of time devoted to leisure activities, 0.75, is also higher than before.

However, calibration analyses, including Turnovsky (2002), Gómez (2008) and

Pintea (2010), suggest that this is an acceptable value.23 The parameters δ and
21The detailed numerical results from single equilibrium cases are available from the author

upon request.
22The result for δ is basically the same as the famous two sector model of Lucas (1988), on

the grounds that an increase in the production efficiency of the second sector contributes to

long-run growth.
23Values of around 0.7 were either obtained or assumed in these studies.
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σ are adopted so as to replicate the long-term annual growth rate. In compari-

son with the single equilibrium case, in particular, we find that a sizable value

of σ is required in order to generate multiple equilibria.

[Insert Table 2 around here]

In setting parameter values, we need to satisfy the two conditions. Namely,

(i) the above noted inequality condition that integrates the conditions for gen-

erating multiple equilibria and the joint concavity associated with the utility

function, and (ii) the transversality condition.24 So that the transversality con-

dition (10) holds, we find it necessary to satisfy the following inequality:

ρ − (1 − θ)g > 0. (22)

The case of a single steady state always satisfies (22) since θ > 1.

Our procedure here is as follows. We first set θ and σ in light of condition

(i), and then proceed to specific computations. In turn, for the growth rates of

the two equilibria, we check (22) under each scenario. Naturally enough, all the

examples we present below meet these requirements.

[Insert Fig. 2 (caption: Benchmark case (dual steady states))

around here]

We now move on to concrete analyses. Fig. 2 illustrates the reference case

applying the benchmark parameters of Table 2. At the steady state, the two

growth rates are 2.11% and 4.05%, respectively. The growth gap between the

two equilibria is about 2%, so there is a considerable difference depending on

which equilibrium is realized. As noted before, for our model economy, the

24For condition (i), η is free to be set such that the solutions of the model are not bound

by the size of η/(1 + η). Therefore, we should focus attention on the relationship between θ

and σ.
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most descriptive country group is developing countries. Even under the low-

growth steady-state equilibrium, the calculated growth rate (2.11%) is close to

the average annual growth rate of U.S. per capita GDP over the last 140 years,

which for these developing countries would constitute acceptable performance.25

In a general understanding, when self-fulfilling expectations on the provision of

public health infrastructure enter into a virtuous cycle, that will lead to a more

rapid growth (high-growth steady state). To be assured of the positivity of

X∗ under a given set of parameters, we need the real economic growth rate

to be less than or equal to 4.3%. Of course, the two growth rates satisfy this

condition.26

In the following, we observe the effects of variations in τ and δ on growth

rates because these parameters played a key role in the unique equilibrium case.

Moreover, the impact of changes in leisure time fraction, l∗, and the elasticity

of the utility of public health infrastructure, σ, are concretely examined.

[Insert Fig. 3 (caption: A change in τ from 0.05 to 0.055 (dual

steady states)) around here]

Let us now change the income tax rate and efficiency parameter for public

health. It was observed in the single equilibrium case that changes in these

parameters have a significant influence on growth rate. Given this, Fig. 3 first

shows the case of changing τ from 5% to 5.5%. Compared with the benchmark

case, the growth rate at the high-growth steady state somewhat decreases to

3.74%, whereas the growth rate at the low-growth steady state increases to

2.52%.27 It is worthwhile to note that the famous nonmonotonic relationship

between public spending and economic growth derived by Barro (1990) can

be observed in the two steady states at the same time. In particular the fact

25See Jones (2011, pp. 49–50)
26As noted before, all numerical explorations also satisfy the positivity condition.
27The latter case is notable, as we have confirmed a positive growth effect.
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that a tax policy can remedy the inferior equilibrium is valuable knowledge for

macroeconomic development policies. This point will be examined further in

the following subsection. Secondly, we update δ from 0.65 to 0.7. The effects of

this change on the equilibrium growth rates are similar to the case of the change

in tax rate and this case is shown in Fig. 4. Compared with the benchmark, as

expected, the increase in the growth rate at the low-growth steady state is of

particular note (g∗
high = 0.0382, g∗

low = 0.0242).

[Insert Fig. 4 (caption: A change in δ from 0.65 to 0.7 (dual steady

states)) around here]

From a theoretical point of view, a highlight of this paper is the introduction

of elastic labor supply (i.e., labor–leisure choice). In the single equilibrium case,

a change in the time fraction of labor supply (or leisure) had a certain impact

on growth rate. In the case of multiple equilibria, the change also affects the

two steady states, which is highly intriguing. Namely, self-fulfilling expectations

with respect to the provision of public infrastructure, which lead to either the

high- or low-growth equilibrium, are attenuated by an increase in labor supply.

Fig. 5 corresponds to this case.

[Insert Fig. 5 (caption: A change in l∗ from 0.75 to 0.73 (dual

steady states)) around here]

When changing l∗ from 0.75 to 0.73, we obtain growth rates of 3.81% and

2.43% for the high- and low-growth steady states, respectively. In comparison

with the benchmark, the growth rate at the high-growth steady state decreases,

whereas the growth rate at the low-growth steady state increases. As described

before, if the agent expects a lower (resp. higher) provision of infrastructure,

physical capital accumulation is dampened (resp. promoted). An increase in

labor supply moderates the present situation since the gap in the two growth
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rates diminishes. This result implies that, even in developing countries, it is

important to deal with various problems in the labor market, including the

problem of unemployment, given that a change in labor supply influences growth

rate.

[Insert Fig. 6 (caption: A change in σ from 3.7 to 3.85 and 4.0 (dual

steady states)) around here]

Lastly for the case of multiple equilibria, we investigate the effects of a

change in σ on a couple of growth rates. We develop the analysis in Fig. 6

in which different cases (including the benchmark case of Fig. 2) are displayed

all together. A larger value of σ, which corresponds to the case where the

agent benefits to a greater extent from public health infrastructure levels (ex-

ogenously given), appears to harm the growth rate at the high-growth steady

state in the course of formulating one’s own utility. Comparing with respect to

g∗
high among the three cases, we can observe notable differences: 4.05% (bench-

mark; σ = 3.7), 3.74% (σ = 3.85) and 3.42% (σ = 4.0). The results can be

explained as follows. An economy arriving at the high-growth steady state has

accumulated more physical capital, thus investment in capital is less productive

in this state. As σ increases, the importance of K to H is further diminished.28

In such an economy with a higher level of development, as σ increases, long-run

growth rate declines because individuals are assumed to prefer consumption to

saving, whereas in the case of the low-growth equilibrium we cannot find sig-

nificant variations in the growth rates.29 Roughly speaking, when economically

meaningful dual steady states arise, it can be said that a change in σ has a

relatively small effect on the low-growth equilibrium.

3.3. Improving the inferior equilibrium under multiple equilibria
28At the high-growth equilibrium, as σ increases, X∗ increases and Z∗ decreases.
29The growth rates at the low-growth equilibrium are 2.11% (benchmark; σ = 3.7), 2.18%

(σ = 3.85) and 2.29% (σ = 4.0), respectively.
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How can we deliver a better growth process under emerging multiple equi-

libria? Is there the role for economic policy in stepping up to this challenge? If

so, what is it exactly? In the last part of the numerical analysis, we focus on

these problems.

In our model, the direction and degree of self-fulfilling expectations for future

public infrastructure level show which equilibrium the economy will reach at the

steady state. Consequently, a variety of policies are thought to have an indirect

effect, whereas policies that have direct effects on equilibrium determination are

likely limited. Now we define desirable economic circumstances under multiple

equilibria from the viewpoint of growth rate as follows.

Definition 2. Under multiple equilibria, desirable economic circumstances

are defined as the situation in which the growth gap between the high- and

low-growth steady state is narrow.

Since an important role of macroeconomic policy is to stabilize economic

fluctuations in general, this is a reasonable definition. The focus of our analysis

here is developing countries and we apply the definition to such economies.

Within the overall numerical results attempted in this paper, the case we will

investigate below should meet both the requirements of feasibility and policy

validity.30 In this respect, we focus on two areas of economic policy, namely,

changes in the income tax rate and the production efficiency of public health

infrastructure.

[Insert Fig. 7 (caption: Improving the low-growth state (tax policy

impact)) around here]

Fig. 7 shows the case where τ is increased from 5% to 6%. Note that σ is

30It is likely a difficult challenge for economic policies to directly affect agent’s deep pa-

rameters.

20



also changed slightly from the benchmark case (σ=3.6).31 Since the two growth

rates are 3.4% (the high-growth steady state) and 3.13% (the low-growth steady

state), regardless of which equilibrium is attained, no considerable difference is

seen in comparison with the benchmark. A higher tax rate might well lead to a

reduction in the gap, but for developing countries setting tax levels too high is

unrealistic. In view of this, 6% is appropriate. Now, let us apply the well-known

Rule of 70 to the present case. Thus, the number of years it takes for income

to double is about 20.6 years at the high-growth steady state and 22.4 years

at the low-growth steady state, respectively. We may conclude that there is no

significant difference between the cases, because the difference is only about 2

years, a very slight difference.

[Insert Fig. 8 (caption: Improving the low-growth state (public

health policy impact)) around here]

Fig. 8 represents the case in which δ is increased from 0.65 to 0.77. As for

σ, we use the same values as above. In this scenario, the growth rate at the

high-growth steady state is 3.53%, whereas the growth rate at the low-growth

steady state is to 2.99%. As in the previous case, applying the Rule of 70, we

can confirm that the difference in the number of years to double income between

the cases is about 3.6 years.

Our findings on how to improve the inferior equilibrium in developing coun-

tries are as follows. First, it is important that the government undertake the

accumulation of public health infrastructure by levying a moderate income tax

on individuals. Second, it is also important for the state to arrange for the

steady provision of infrastructure. By taking advantage of these policy solu-

tions to reduce the growth rate gap, governments in developing countries can

improve the low-growth state, even under multiple equilibria.

31See Table 2.

21



4. Properties of a dynamic system

4.1. Dynamic system

In this section, we summarize a dynamic system under our model and ex-

amine its stability properties. First, from the dynamic equation for physical

capital and (13)–(15), our dynamic system is represented by the following four

differential equations:

K̇

K
= (1 − τ)(1 − l)1−α

(
K

H

)α−1

− C

K
, (23)

Ḣ

H
= δτ(1 − l)1−α

(
K

H

)α

, (24)

Ċ

C
=

α

b
(1 − τ)(1 − l)1−α(1 − η(1 − θ))

(
K

H

)α−1

+
1 − θ

b
δτ(1 − l)1−α(σ − η(1 − α))

(
K

H

)α

+
αη(1 − θ)

b

(
C

K
− l̇

1 − l

)
− ρ

b
, (25)

l̇

l
=

Ċ

C
− α(1 − τ)(1 − l)1−α

(
K

H

)α−1

+ α

(
C

K
− l̇

1 − l

)

− δτ(1 − α)(1 − l)1−α

(
K

H

)α

, (26)

where θ − η(1 − θ) ≡ b.32 In view of tractability, the present four-dimensional

system can be converted to a new system (see Appendix B). As a result, these

three equations also characterize the dynamics of the model.

Unfortunately, it is a rather formidable task for us to attempt further analyt-

ical investigation. To overcome this difficulty, θ is set to unity. As is well-known,

under this assumption, our utility function reduces to a logarithmic form, sat-

isfying additive separability. In our setting, θ = 1 corresponds to the case in

which the equilibrium is uniquely determined. It is therefore impossible to ex-

amine the dual steady-states case, even though we are especially interested in

32Note that (24) is identical to (14).
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this case.33 This is an issue for the future. As a result, our simplified dynamic

system is as follows:

Ẋ

X
= (α − 1)(1 − τ)(1 − l)1−αZα−1 − X − ρ, (27)

Ż

Z
= (1 − l)1−α((1 − τ)Z−1 − δτ)Zα − X, (28)

l̇

l
=

(1 − l)(δτ(α − 1)(1 − l)1−αZα + αX − ρ)

1 − l(1 − α)
. (29)

4.2. Transitional dynamics and local stability

To examine the local stability of the equilibrium, we linearize the reduced

dynamic system (27)–(29) under the assumption θ = 1, associated with the

original system (23)–(26), around the steady state (SS). The steady-state values

are denoted as X∗, Z∗ and l∗. Consequently, we obtain the following linear

system: 
Ẋ(t)

Ż(t)

l̇(t)

 =


a11 a12 a13

a21 a22 a23

a31 a32 a33




X(t) − X∗

Z(t) − Z∗

l(t) − l∗

 , (30)

33In the stability analysis, Raurich (2003) also concentrates on the case of unique equilib-

rium. Such simplification is common in the literature when covering the issue of multiple

equilibria.
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where

a11 =
∂Ẋ

∂X

∣∣∣∣
SS

= −X∗ < 0,

a12 =
∂Ẋ

∂Z

∣∣∣∣
SS

= −(1 − α)X∗Z∗(X∗ + ρ) < 0,

a13 =
∂Ẋ

∂l

∣∣∣∣
SS

=
−(1 − α)X∗(X∗ + ρ)

1 − l∗
< 0,

a21 =
∂Ż

∂X

∣∣∣∣
SS

= −Z∗ < 0,

a22 =
∂Ż

∂Z

∣∣∣∣
SS

= −(1 − α)X∗ − δτ(1 − l∗)1−α(Z∗)α < 0,

a23 =
∂Ż

∂l

∣∣∣∣
SS

=
(1 − α)X∗Z∗

1 − l∗
> 0,

a31 =
∂l̇

∂X

∣∣∣∣
SS

=
αl∗(1 − l∗)

1 − l∗(1 − α)
> 0,

a32 =
∂l̇

∂Z

∣∣∣∣
SS

=
−αδτ(1 − α)l∗(1 − l∗)2−α(Z∗)α−1

1 − l∗(1 − α)
< 0,

a33 =
∂l̇

∂l

∣∣∣∣
SS

=
(1 − α)l∗(αX∗ − ρ)

1 − l∗(1 − α)
> or < 0.

Our 3 × 3 system is composed of one control variable, l, one control-like

variable, X, both of which are jump variables, and one state-like variable, Z,

whose initial value Z(0) is predetermined.34 To examine the local stability

properties, we first confirm the sign of the trace of the Jacobian matrix, J∗,

in (30).35 From the elements of J∗, if a33 < 0, TrJ∗ < 0 holds. However,

since the sign of αX∗ − ρ is ambiguous, the sign of TrJ∗ is not determined. So

obtaining TrJ∗ directly, it always has a negative sign. Based on this result and

the Routh-Hurwitz theorem, there are four possible cases. Following Benhabib

and Perli (1994) and Chen and Lee (2007), we display the cases in Table 3.

[Insert Table 3 around here]

34The initial value X(0) ≡ C(0)/K(0) is not predetermined, since C(0) is a jump variable.
35The trace and determinant of J∗ are designated as TrJ∗ and DetJ∗, respectively.
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The Routh-Hurwitz theorem states that the number of characteristic roots of

the corresponding polynomial with positive real parts is equal to the number of

variations of sign in the scheme [−1, TrJ∗,−BJ∗ +DetJ∗/TrJ∗, DetJ∗], where

BJ∗ denotes the determinant of the bordered Hessian of J∗.36 The first three

rows of Table 3 show the cases in which the number of changes in signs are less

than or equal to one, so the number of characteristic roots with negative real

parts is either 2 or 3. In a similar way, the fourth row of Table 3 represents the

case in which the number of negative characteristic roots is 1.

In any case, to determine the corresponding scenario, we need to obtain

the signs of −BJ∗ + DetJ∗/TrJ∗ and DetJ∗. Because of the ambiguity of

a33, it is difficult to determine the sign of DetJ∗. Now, we employ the special

assumption which satisfies αX∗ = ρ. Although this is an ad-hoc assumption,

it makes sense in a way. The values α = 0.35 and ρ = 0.05 that we used in

the previous numerical analysis lead to X∗ = 0.143. Since X ≡ C/K, this is a

relatively reasonable assumption. Applying αX∗ = ρ, we have

DetJ∗ = −αδτl∗(1 − α)2(1 − l∗)1−αX∗(Z∗)α(2X∗ + ρ)

1 − l∗(1 − α)

− α(1 − α)l∗X∗(X∗ + ρ)((1 − α)X∗(1 + (Z∗)2) + δτ(1 − l∗)1−α(Z∗)α)

1 − l∗(1 − α)
< 0.

Since DetJ∗ < 0, the remaining cases are limited to the first and fourth row of

Table 3. We summarize the current cases as follows.

Proposition 3. −BJ∗ + DetJ∗/TrJ∗ > 0 if BJ∗ < 0. Here, J∗ has only one

negative characteristic root, and thus the equilibrium is locally determinate (i.e.,

locally saddle-path stable).

The negative eigenvalue corresponds to a stable root and constitutes the stable

trajectory converging to the unique steady state. At the same time, we arrive

36As is well known, the characteristic roots of J∗ are the solutions of the following charac-

teristic polynomial:

−µ3 + TrJ∗µ2 − BJ∗µ + DetJ∗ = 0,

where µ denotes the eigenvalue.
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at the following.

Proposition 4. If −BJ∗ + DetJ∗/TrJ∗ < 0 is satisfied, J∗ has three negative

roots. It is possible that in this case the equilibrium is locally indeterminate.

Indeterminacy implies that there are multiple converging paths in the neigh-

borhood of the unique steady state.

To sum up our local stability analysis, under the assumptions of θ = 1 and

αX∗ = ρ, we obtain the result that there are either determinate or indeterminate

equilibrium path, depending on the sign of −BJ∗ + DetJ∗/TrJ∗. We present

a typical numerical example for reference below.

Example. Using the two assumptions and a set of standard parameters (α =

0.35, τ = 0.05, δ = 0.3, ρ = 0.05 and l∗ = 0.6), the sign of the bordered Hessian

is obviously negative for any acceptable value of Z∗.

Therefore, it is highly likely that the equilibrium is locally saddle-path stable.

5. Concluding remarks

In this paper, on the basis of theoretical and numerical analyses, we exam-

ined how publicly provided health infrastructure can affect the long-run growth

of the economy, allowing for an elastic labor supply. Infrastructure has a direct

influence on production activities through the enhancement of labor produc-

tivity, which has a positive impact on the utility of agents. By extending the

model to accept a relatively large intertemporal elasticity of substitution, which

is consistent with the recent evidence, we show that there is the possibility of

multiple equilibria, in addition to the standard case of a unique equilibrium.

The key insights of this paper cover the case of multiple equilibria. In com-

parison with the case of a single steady state, the multiple equilibria case pro-

duced different results in several respects. As a particularly interesting result,

we find that the more an agent benefits from exogenously given infrastructure
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levels in their own utility, the growth rate at the high-growth steady state de-

clines notably. The fact that a change in the welfare weight of infrastructure

almost exclusively affects the high-growth equilibrium was of great interest.

Moreover, we can confirm that an increase in the efficiency of infrastructure

provision enhances the growth rate at the low-growth steady state. This finding

implies a way out of the low-growth state in developing countries. For exam-

ple, in regard to providing foreign aid, our result emphasizes the importance

of creating and maintaining public health infrastructure. Further, an increase

in labor supply has a greater effect on the low-growth steady state and results

in an increase in the growth rate. Connecting these results to actual policy,

we point to possible improvements in the unemployment problem in developing

countries.

The highlight of this paper was our exploration, through numerical studies,

of how development policies are effective in improving the low-growth state,

taking into account the feasibility of the policies. From the viewpoint of macro-

stabilization policy, we defined good policies as reducing the growth rate gap

between the high- and low-growth equilibrium, and conducted an analysis in

this direction. As a result, two useful policies emerged. First, when the govern-

ment collects taxes at an appropriate tax rate and expends that revenue on the

provision of infrastructure, the disparity between the two steady states can be

reduced considerably. Second, creating a more efficient process for the provi-

sion of infrastructure was found to play a crucial role in improving the inferior

equilibrium. These results offer important insights for economic development

and macroeconomic policies in developing countries.

Also, we should note the properties of our dynamic system. Since the orig-

inal system is rather complex, we were forced to attempt an analysis upon

accepting some specific assumptions. We showed that for the local stability of

the (unique) equilibrium, they are either saddle-path stable or indeterminate.

For the considered scenarios, numerical exploration proved that the case gives
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rise to saddle-path stability.

Finally, for further investigation, we provided an essential extension of the

research findings given in this paper. An increase in the difficulty of our chal-

lenge is inevitable, but it is important to enrich the analysis by introducing

individual health capital, in addition to the health infrastructure which is ex-

ogenously supplied by the government.
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Appendix A. Derivation of (13)

Log-differentiating (12), we have

l̇

l
=

Ċ

C
− ẇ

w
− Ḣ

H
.

Here, applying the expression ẇ/w = α(K̇/K) + α(l̇/1 − l) − α(Ḣ/H) to

the above yields:

l̇

l
=

Ċ

C
− α

K̇

K
− α

l̇

1 − l
− (1 − α)

Ḣ

H
.

Finally, substituting the expression K̇/K = (1−τ)(1−l)1−α(K/H)α−1−C/K

into the equation above, we obtain (13) in the text.

Appendix B. A condensed dynamic system
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Using X ≡ C/K, Z ≡ K/H and (23)–(26), we have

Ẋ

X
=

α(1 − τ)(1 − l)1−α(1 − η(1 − θ))Zα−1

b

+
δτ(1 − θ)(1 − l)1−α(σ − η(1 − α))Zα + αη(1 − θ)X − ρ

b

− α2η(1 − τ)(1 − θ)2(1 − l)1−αlZα−1

b((1 − l)b + αθl)

− αηδτ(1 − θ)(σ(1 − θ) − θ(1 − α))(1 − l)1−αlZα

b((1 − l)b + αθl)

− αη(1 − θ)l(αθX − ρ)

b((1 − l)b + αθl)
− (1 − τ)(1 − l)1−αZα−1 − X,

Ż

Z
= (1 − τ)(1 − l)1−αZα−1 − δτ(1 − l)1−αZα − X

and

l̇

l
=

α(1 − τ)(1 − θ)(1 − l)2−αZα−1

(1 − l)b + αθl

+
δτ(1 − l)2−α(σ(1 − θ) − θ(1 − α))Zα + (1 − l)(αθX − ρ)

(1 − l)b + αθl
.
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Table 1

Benchmark parameters (single steady state).

α τ δ σ θ ρ l∗

0.35 0.05 0.3 0.8 1.2 0.05 0.6

Table 2

Benchmark parameters (dual steady states).

α τ δ σ θ ρ l∗

0.35 0.05 0.65 3.7 0.35 0.1 0.75

Table 3

Equilibrium properties of the case with one state and two control variables.

−1 TrJ∗ −BJ∗ + DetJ∗/TrJ∗ DetJ∗ Num. of negative roots Path toward SS

− − − − 3 Indeterminate

− − − + 2 Indeterminate

− − + + 2 Indeterminate

− − + − 1 Determinate
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Figure 1: Benchmark case (single steady state)
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Figure 2: Benchmark case (dual steady states)
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Figure 3: A change in τ from 0.05 to 0.055 (dual steady states)
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Figure 4: A change in δ from 0.65 to 0.7 (dual steady states)
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Figure 5: A change in l∗ from 0.75 to 0.73 (dual steady states)
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Figure 6: A change in σ from 3.7 to 3.85 and 4.0 (dual steady states)
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Figure 7: Improving the low-growth state (tax policy impact)
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Figure 8: Improving the low-growth state (public health policy impact)
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