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1 Multiple linear regression

1.1 Matrix expression of the multiple linear regression

The multiple linear regression model assumes that the statistical relationship between the response variable
Yi (i = 1, 2, · · · , n) and the explanatory variables xij (i = 1, 2, · · · , n, j = 1, 2, · · · , k) is of the form

Yi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik + ϵi

ϵi ∼ N(0, σ2)

where βj (j = 0, 1, 2, · · · , k) are the regression parameters and ϵi denote the independent normal random
variables with zero mean and common variance σ2.

The matrix representation for this regression model is denoted by

Y = Xβ + ϵ

where

Y =


Y1

Y2

...
Yn

 , X =


1 x11 x12 · · · x1k

1 x21 x22 · · · x2k

...
...

...
...

...
1 xn1 xn2 · · · xnk



β =


β0

β1

...
βk

 , ϵ =


ϵ1
ϵ2
...
ϵn


The matrix X is the n× (k + 1) matrix and called the design matrix.

The fitted values Ŷi = β̂0 + β̂1xi1 + β̂2xi2 + · · · β̂kxik and the residual vector e = Y− Ŷ = Y−Xβ̂ can also
be represented using matrix notation as follows;

Ŷ =


Ŷ1

Ŷ2

...

Ŷn

 =


β̂0 + β̂1x11 + β̂2x12 + · · ·+ β̂kx1k

β̂0 + β̂1x21 + β̂2x22 + · · ·+ β̂kx2k

...

β̂0 + β̂1xn1 + β̂2xn2 + · · ·+ β̂kxnk

 = Xβ̂

e =


Y1 − Ŷ1

Y2 − Ŷ2

...

Yn − Ŷn

 = Y −Xβ̂

where

β̂ =


β̂0

β̂1

...

β̂k
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are the estimated parameters.
The residual vector is orthgonal to the columns of the design matrix.

XT (Y −Xβ̂) = 0

Then the parameter estimates β̂ are derived form the normal equations,

XTXβ̂ = XTY

When the inverse matrix (XTX)−1 is exists, the solutions to the normal equations, the vector of fitted values,
and the residual vector in matrix form are given by

β̂ = (XTX)−1XTY (1)

Ŷ = Xβ̂ = X(XTX)−1XTY = HY (2)

e = Y − Ŷ = Y −HY = (I−H)Y (3)

where
H = X(XTX)−1XT (4)

The matrix H is called the hat matrix.

1.2 Estimated standard errors of the estimated regression parameters

Suppose the random vector W is obtained by multiplying the random vector Y by matrix A; that is, W = AY.
Then

Cov(W) = ACov(Y)AT (5)

It follows from Eq.(5) with

A = (XTX)−1XT

AT = X(XTX)−1

Cov(Y) = σ2I

that
Cov(β̂) = Aσ2IAT = σ2(XTX)−1XTX(XTX)−1 = σ2(XTX)−1 (6)

When we substitute the unbiased estimator

s2 =
eTe

n− k − 1

for the variance σ2 in Eq.(6), we obtained the estimated variance-covariance matrix :

s2(β̂) = s2(XTX)−1

and the estimated standard errors s(β̂) for the parameter estimates β̂.

1.3 Coefficients of multiple determination

The SST (sum of total squares), the SSR (sum of the squared regression) and the SSE (sum of the squared
errors) are defined as follows respectively;

SST =

n∑
i=1

(Yi − Ȳ )2 = YTY − nȲ 2

SSR =

n∑
i=1

(Ŷi − Ȳ )2 = ŶT Ŷ − nȲ 2

SSE =

n∑
i=1

e2i = eTe
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These satisfies the following relation,
SST = SSR + SSE.

The coefficients of multiple determination, denoted R2, is defined as follows:

R2 =
SSR

SST

The adjusted R2 is defined as follows:

R2
a = 1−

(
n− 1

n− k − 1

)
(1−R2)

1.4 Confidence intervals for the regression parameters

The confidence intervals for the regression parameters can derived from

β̂i − βi

s(β̂i)
∼ tn−k−1

where s(β̂i) is the estimated standard error of the paramter estimate β̂i and tn−k−1 is the Student’s t distribution
with (n− k− 1) degrees of freedom. For example, a 100(1-α)% confidence interval for the parameter estimate

β̂i is

β̂i ± s(β̂i)tn−k−1

(α
2

)
1.5 Studentized residual

The residual vector e can be written in tersm of the hat matrix Eq.(4) as follows;

e = Y − Ŷ = Y −HY = (I−H)Y

It follows from Eq.(5) with

HT = H,

(I−H)2 = (I−H)

that
Cov(e) = (I−H)σ2I(I−H)T = σ2(I−H)2 = σ2(I−H)

It can be shown that the variance of the ith residual ei are given by

V (ei) = σ2(1− hii)

where hii is the ith diagonal element of the hat matrix.
We obtain the estimated standard error for the ith residual, denoted s(ei), by replaceing σ2 with its estimate

s2. Thus,

s(ei) = s
√
1− hii

The Studentized residual is difined, denoted e∗i , as follows:

e∗i =
ei

s(ei)

1.6 Confidence intervals and prediction intervals in multiple linear regression

The vector
xT
0 = (1, x01, x02, · · · , x0k)

denotes the values of the explanatory variables; that is,

X1 = x01, X2 = x02, · · · , Xk = x0k

The estimated mean response, denoted Ŷ (x0), can be written as the matrix product

Ŷ (x0) = xT
0 β̂
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It follows from Eq.(2),
β̂ = (XTX)−1XTY

that
xT
0 β̂ = AY

where

A = xT
0 (X

TX)−1XT

AT = X(XTX)−1x0

It follows from Eq.(5), with Cov(Y) = σ2I that

Cov(xT
0 β̂) = Aσ2IAT = σ2xT

0 (X
TX)−1XTX(XTX)−1x0 = σ2xT

0 (X
TX)−1x0

The variance of Ŷ (x0) is given by
V(Ŷ (x0)) = σ2xT

0 (X
TX)−1x0

We obtain the estimated standard error of prediction, denoted s(Ŷ (x0)), by replaceing σ2 with its estimate
s2 = SSE/(n− k − 1); thus,

s(Ŷ (x0)) = s
√

xT
0 (X

TX)−1x0

A 100(1− α)% confidence interval for the mean response at the values x0 is given by

xT
0 β̂ ± tn−k−1

(α
2

)
s
√

xT
0 (X

TX)−1x0

A future response is given by Y (x0) = β0 + β1x01 + · · · + βkx0k + ϵ0 and the predicted future response is

given by Ŷ (x0) = β̂0 + β̂1x01 + · · ·+ β̂kx0k at the values x0 of the explanatory variables, where ϵ0 denote the
independent normal random variable with zero mean and variance σ2 that is independent of Ŷ (x0).

Cosequently the variance of the difference between the future response Y (x0) and the predicted future
response Ŷ (x0), denoted V (Y (x0)− Ŷ (x0)), is given by

V(Y (x0)− Ŷ (x0)) = V(Y (x0)) + V(Ŷ (x0)) = σ2(1 + xT
0 (X

TX)−1x0)

Similarly, the estimated standard error of the difference between the future response Y (x0) and the predicted
future response Ŷ (x0) is given by

s(Y (x0)− Ŷ (x0)) = s
√

1 + xT
0 (X

TX)−1x0

The coresponding 100(1− α)% prediction interval for a future response Y (x0) is given by

xT
0 β̂ ± tn−k−1

(α
2

)
s
√
1 + xT (XTX)−1x
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