
Function model fitting

January 10, 2013

1 Parameters

1.1 One dimensional function

A function f(x,a) to be fitted to data (xi, yi) (i = 1, 2, · · · , n) is assumed to include parameters a =
(a1, a2, · · · , am), where m < n. In addition, it is assumed that the errors are not included in xi or are small
enough to be negligible when compared to the errors of yi. If the population distribution of yi is assumed
to be Gaussian distribution N(f(xi,a), σ2

i ) with mean f(xi,a) and variance σ2
i , and yi is a sample from the

population, the likelihood function is expressed by

L =
n∏

i=1

1√
2πσi

exp
[
−{yi − f(xi,a)}2

2σ2
i

]
. (1)

If the population distribution of yi is assumed to be Poisson distribution P (yi; f(xi,a)) with mean f(xi,a),
and yi is a sample from the population, the likelihood function is expressed by

L =
n∏

i=1

{f(xi,a)}yi

yi!
exp{−f(xi,a)}. (2)

In order to maximize the probability that the data y1, y2, · · · , yn are measured, that is, to maximize the
likelihood function L, taking the logarithm of the function L, differentiating by parameters aj (j = 1, 2, · · · , m)
and setting to zero,

n∑
i=1

wi{yi − f(xi,a)}∂f(xi,a)
∂aj

= 0 (3)

is obtained. Where wi ≡ 1/σ2
i for the case that the data are obtained from Gaussian distribution or wi ≡

1/f(xi,a) for the case of Poisson distribution.
The equation (3) can be solved about parameters, aj . This method is called the method of maximum

likelihood[1, 2, 3]. If the data are samples from Gaussian distribution, the method of maximum likelihood
is same as minimizing the argument in the exponential in the likelihood function (1), that is, minimizing the
quantity,

χ2 =
n∑

i=1

{yi − f(xi,a)}2

σ2
i

. (4)

This method is called the method of least squares.
If the function model is nonlinear with respect to the parameters included in it, the equation (3) becomes

nonlinear simultaneous equations and it can not be solved analytically. For that case, the following methods are
taken in order to compute the optimal values of the parameters. When the parameters a0 = (a10, a20, · · · , am0)
at the vicinity of the optimal parameters a = (a1, a2, · · · , am) are given, the optimal parameters a can be
expressed as a = a0 + δa using correction terms, δa. Expanding the function f(x,a) in a Taylor series about
the vicinity of a0 to the first order in the parameter increments δa, the function f(x,a) is expressed by

f(x,a) = f(x,a0) +
m∑

k=1

∂f(x,a0)
∂ak

δak. (5)

Substituting the equation (5) for (3) and ignoring second or higher order terms of δak,

m∑
k=1

αjkδak = βj (j = 1, 2, · · · ,m) (6)
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is obtained. Where, αjk and βj are expressed by

αjk =
n∑

i=1

wi

[
∂f(xi,a0)

∂aj

∂f(xi,a0)
∂ak

− {yi − f(xi,a0)} ∂2f(xi,a0)
∂aj∂ak

]
,

βj =
n∑

i=1

wi{yi − f(xi,a0)}∂f(xi,a0)
∂aj

,

respectively. This αjk is called the curvature matrix. Here again, for the case that the data are the samples
from Gauusian distribution, wi ≡ 1/σ2

i , and for the case of Poisson distribution, wi ≡ 1/f(xi,a0).
For the second term in [ ] of αjk, the second order differentiation of f(xi,a0) is zero, where f(xi,a0) is

linear function with respect to the parameters a, or small enough to be negligible when compared to the term
involving the first derivative. It also has an additional possibility of being ignorably small in practice: The
term multiplying the second derivative is {yi − f(xi,a0)}. For successful model, this term should just be the
random measurement error of each point. This error can have either sign, and should in general be uncorrelated
with the model. Therefore, the second derivative terms tend to cancel out when summed over i.

Computing the inverse matrix of αjk which is expresses by (α−1)jk, the δa can be obtained from

δaj =
m∑

k=1

(α−1)jkβk (j = 1, 2, · · · ,m). (7)

Therefore, the optimal parameters can be obtained from a = a0 + δa.
The almost right value can be acquired by the first computation of the equation (7) if the initial values

of the parameters a0 given beforehand are close to the optimal values. However, it is difficult to give such
initial values of the parameters beforehand. If the parameters is obtained by the first computation, they will
be considered as new parameters and the same computation will be repeated. In such a repeated computation
process, when the values of the correction terms δa become small enough, and further, for the case of the
least-squares method, the value of χ2 of the equation (4) is considered to be minimum, or for the case of the
maximum likelihood method, the value of L in the equation (2) is considered to be maximum, the computation
will be completed and the values of the parameters at that time will be considered as the values of the optimal
parameters a. (Refer to section3.)

The modified Marquardt method[2] is used in order to minimize χ2 or maximize L and to converge
the computations described above. Using the Marquardt method, near the starting point which gave the
initial values of the parameters, to reduce the χ2 or increase L, the diagonal elements of the matrix αjk are
emphasized. When approaching a converging point, the optimal values of the parameters can be determined
by the equation (7) with exact Taylor expansion of the function.

1.2 Two dimensional function

For the case that there are errors in both data, (Xi, Yi) (i = 1, 2, · · · , n), the likelihood function corresponding
to the population distribution must be considered.

For example, if both Xi and Yi are samples from Gaussian distribution, N(xi, σ
2
xi

) and N(yi, σ
2
yi

), respec-
tively, the likelihood function is expressed by

L =
n∏

i=1

1√
2πσxi

exp
[
− (Xi − xi)2

2σ2
xi

]
1√

2πσyi

exp
[
− (Yi − yi)2

2σ2
yi

]
. (8)

Or, if both Xi and Yi are samples from Poisson distribution, P (Xi; xi) and P (Yi; yi), respectively, the
likelihood function is expressed by

L =
n∏

i=1

xXi
i

Xi!
exp(−xi)

yYi
i

Yi!
exp(−yi).

Where, xi and yi are the means, and σ2
xi

and σ2
yi

the variances in the distributions. Moreover, if there is a
constraint,

f(xi, yi,a) = 0,

between xi and yi, the paramerers, a = (a1, a2, · · · , am) (m < n), in the function model which maximize the
likelihood function, can be obtained using the method of Lagrange multipliers[3].
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For example, taking the logarithm of the likelihood function (8), the likelihood function with the multipliers
λi (i = 1, 2, · · · , n) is expressed by

L =
n∑

i=1

{
− (Xi − xi)2

2σ2
xi

− ln σxi −
(Yi − yi)2

2σ2
yi

− ln σyi + λifi

}
− n ln(2π).

Maximizing this function with respect to xi、yi, λi and aj (i = 1, 2, · · · ,m), respectively,

n∑
i=1

wi

{
(Xi − xi)

∂fi

∂xi
+ (Yi − yi)

∂fi

∂yi

}
∂fi

∂aj
= 0, (9)

is obtained. Where, fi ≡ f(xi, yi, aj), and wi =

{(
∂fi

∂xi

)2

σ2
xi

+
(

∂fi

∂yi

)2

σ2
yi

}−1

.

If the almost right values near the true values, xi, yi and aj , which are expressed by x0i, y0i and a0j , are
given, the true values can be obtained from

xi = x0i + δxi (10)
yi = y0i + δyi (11)
aj = a0j − δaj . (12)

Where, the correction terms δxi, δyi and δaj are small enough.
When expanding the function fi in a Taylor series about the vicinity of x0i, y0i and a0j to the first order,

the function is expressed by

fi = f0i +
∂f0i

∂xi
δxi +

∂f0i

∂yi
δyi −

m∑
k=1

∂f0i

∂ak
δak = 0. (13)

Where, f0i ≡ f(x0i, y0i, a0j).
Substituting the equations (10) and (11) for (9) and using the relation (13),

n∑
i=1

w0i

{
f0i + (Xi − x0i)

∂f0i

∂xi
+ (Yi − y0i)

∂f0i

∂yi

}
∂f0i

∂aj
=

n∑
i=1

w0i
∂f0i

∂aj

m∑
k=1

∂f0i

∂ak
δak

is obtained. Where, w0i =

{(
∂f0i

∂xi

)2

σ2
xi

+
(

∂f0i

∂yi

)2

σ2
yi

}−1

.

Here again, defining

αjk ≡
n∑

i=1

w0i
∂f0i

∂aj

∂f0i

∂ak
,

βj ≡
n∑

i=1

w0i

{
f0i + (Xi − x0i)

∂f0i

∂xi
+ (Yi − y0i)

∂f0i

∂yi

}
∂f0i

∂aj
,

the correction terms of the parameters, δaj , can be obtained from

δaj =
m∑

k=1

(α−1)jkβk (j = 1, 2, · · · ,m). (14)

Therefore, the optimal parameters, aj , can be obtained from the equation (12).

2 Errors of parameters[3]

For the case of the nonlinear least squares fitting, the χ2 is expressed by

χ2 =
n∑

i=1

{
yi − f(xi,a)

σi

}2

.
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From the condition,
∂χ2

∂aj
= 0,

or from the equation (3),
n∑

i=1

yi − f(xi,a)
σ2

i

· ∂f(xi,a)
∂aj

= 0

is obtained. With wi ≡
1
σ2

i

and y = (y1, y2, · · · , yn), defining

Fj(a,y) ≡
n∑

i=1

wi{yi − f(xi,a)}∂f(xi,a)
∂aj

= 0,

this Fj satisfies
m∑

k=1

∂Fj(a,y)
∂ak

dak +
n∑

i=1

∂Fj(a,y)
∂yi

dyi = 0. (15)

Differentiating Fj with respect to ak,

∂Fj(a,y)
∂ak

= −
n∑

i=1

wi

[
∂f(xi,a)

∂ak
· ∂f(xi,a)

∂aj
− {yi − f(xi,a)}∂2f(xi,a)

∂aj∂ak

]
is obtained. Here, if defining

D =



∂F1

∂a1

∂F1

∂a2
· · · ∂F1

∂am
∂F2

∂a1

∂F2

∂a2
· · · ∂F2

∂am
...

...
. . .

...
∂Fm

∂a1

∂Fm

∂a2
· · · ∂Fm

∂am


,

and from the equation (15),

dak = −
m∑

j=1

(D−1)kj

n∑
i=1

∂Fj

∂yi
dyi (16)

is obtained. While, considering ak as a function of y1, y2, · · · , yn,

dak =
n∑

i=1

∂ak

∂yi
dyi. (17)

is obtained. Comparing the equation (16) with (17),

∂ak

∂yi
= −

m∑
j=1

(D−1)kj
∂Fj

∂yi
= −wi

m∑
j=1

(D−1)kj
∂f(xi,a)

∂aj

is obtained.
Therefore, expressing the errors of the parameters by sak

, from the propagation of errors,

s2
ak

=
n∑

i=1

(
∂ak

∂yi

)2

s2
i =

n∑
i=1

wi

 m∑
j=1

(D−1)kj
∂f(xi,a)

∂aj

2

is obtained. Where, si = σi is the error of yi.
For the case of the maximum likelihood fitting, from the equation (3),

Fj(a,y) ≡
n∑

i=1

yi − f(xi,a)
f(xi,a)

· ∂f(xi,a)
∂aj

= 0
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is defined and

∂Fj

∂ak
= −

n∑
i=1

1
f(xi,a)

[
yi

f(xi,a)
· ∂f(xi,a)

∂aj
· ∂f(xi,a)

∂ak
− {yi − f(xi,a)}∂2f(xi,a)

∂aj∂ak

]
is obatined. Since this Fj satisfies

m∑
k=1

∂Fj(a,y)
∂ak

dak +
n∑

i=1

∂Fj(a,y)
∂yi

dyi = 0,

dak = −
m∑

j=1

(D−1)kj

n∑
i=1

∂Fj

∂yi
dyi (18)

is obtained. Where,

Djk =
∂Fj

∂ak
.

While, considering ak as a function of y1, y2, · · · , yn,

dak =
n∑

i=1

∂ak

∂yi
dyi. (19)

is obtained. Comparing the equation (18) with (19),

∂ak

∂yi
= −

m∑
j=1

(D−1)kj
∂Fj

∂yi
=

1
f(xi,a)

m∑
j=1

(D−1)kj
∂f(xi,a)

∂aj

is obtained. Therefore, expressing the errors of the parameters by sak
, from the propagation of errors,

s2
ak

=
n∑

i=1

(
∂ak

∂yi

)2

s2
i =

n∑
i=1

1
f(xi,a)


m∑

j=1

(D−1)kj
∂f(xi,a)

∂aj


2

is obtained. Where, si =
√

f(xi,a).
For the case of two dimensional fitting, from the equation (9), defining

Fj(a,X,Y) ≡
n∑

i=1

wi

{
fi + (Xi − xi)

∂fi

∂xi
+ (Yi − yi)

∂fi

∂yi

}
∂fi

∂aj
= 0,

∂Fj

∂ak
=

n∑
i=1

[[
−2 × w2

i σ2
xi

∂fi

∂xi

{
fi + (Xi − xi)

∂fi

∂xi
+ (Yi − yi)

∂fi

∂yi

}
+ wi(Xi − xi)

]
∂fi

∂aj
· ∂2fi

∂xi∂ak

+
[
−2 × w2

i σ2
yi

∂fi

∂yi

{
fi + (Xi − xi)

∂fi

∂xi
+ (Yi − yi)

∂fi

∂yi

}
+ wi(Yi − yi)

]
∂fi

∂aj
· ∂2fi

∂yi∂ak

+ wi
∂fi

∂aj

∂fi

∂ak

+ wi

{
fi + (Xi − xi)

∂fi

∂xi
+ (Yi − yi)

∂fi

∂yi

}
∂2fi

∂aj∂ak

]
is obtained. Where, X = (X1, X2, · · · , Xn) and Y = (Y1, Y2, · · · , Yn). Since this Fj satisfies

m∑
k=1

∂Fj

∂ak
dak +

n∑
i=1

∂Fj

∂Xi
dXi +

n∑
i=1

∂Fj

∂Yi
dYi = 0,

dak = −
m∑

j=1

(D−1)kj

n∑
i=1

(
∂Fj

∂Xi
dXi +

∂Fj

∂Yi
dYi

)
(20)
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is obtained. Where,

Djk =
∂Fj

∂ak
.

While, considering ak as a function of Xi and Yi,

dak =
n∑

i=1

(
∂ak

∂Xi
dXi +

∂ak

∂Yi
dYi

)
(21)

is obtained. Comparing equation (20) with (21),

∂ak

∂Xi
= −

m∑
j=1

(D−1)kj
∂Fj

∂Xi
= −wi

∂fi

∂xi

m∑
j=1

(D−1)kj
∂fi

∂aj

and
∂ak

∂Yi
= −

m∑
j=1

(D−1)kj
∂Fj

∂Yi
= −wi

∂fi

∂yi

m∑
j=1

(D−1)kj
∂fi

∂aj

are obtained, respectively. Therefore, expressing the errors of the parameters by sak
, from the propagation of

errors,

s2
ak

=
n∑

i=1

{(
∂ak

∂Xi

)2

s2
xi

+
(

∂ak

∂Yi

)2

s2
yi

}
is obtained. Where, sxi = σxi and syi = σyi for the case that xi and yi are samples from Gaussian distributions,
or sxi =

√
xi and syi =

√
yi for the case of Poisson distributions.

3 Convergence in the computation process for the correction terms
δa

For the least-squares method, when the values of the correction terms δa computed in the repeated computation
process and the value of χ2 of the equation (4) satisfy the following conditions[2],

4χ2

1 + χ2(a(k))
5 εχ2

|δaj | 5 εaj (j = 1, 2, · · · ,m),

(22)

the computation is completed and the values of the parameters at that time are considered as the values of the
optimal parameters a. Where, the χ2(a(k)) is the value of the χ2 computed in the kth computation process
for the correction terms and the 4χ2 is defined by the following formula,

4χ2 = χ2(a(k−1)) − χ2(a(k)),

and εχ2 and εaj are defined by the following equations,
εχ2 = max(εM , εu)

εaj = max(εχ2saj , εM |aj |).

By default, setting εM = 2.22× 10−16 and εu = 1.0× 10−12, εχ2 = 1.0× 10−12 is used. The saj is the value of
the error of the parameter aj .

For the case of the maximum likelihood method, when the value of L in the equation (2) is computed and
the above conditions (22) which χ2 is replaced with L are satisfied, the computation is completed and the
values of the parameters at that time are considered as the values of the optimal parameters a.
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