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Abstract

We construct a family of cyclic extensions of number fields, in which every finite

place is unramified, from an elliptic curve with a rational torsion point. As an

application, we obtain such polynomials F (X) of rational coefficients that have the

following property: For a rational number ξ chosen at random, the class number of

the field generated by the square root of F (ξ) is “often” divisible by 3, 5 or by 7.

1 Introduction

The ideal class groups of number fields have been studied for a long time. One studies

the ideal class groups by using certain Diophantine equations, especially the arithmetic

theory of elliptic curves. For example, T. Honda [3] (see also [2]) used elliptic curves

to find infinitely many real quadratic fields whose class numbers are multiple of 3. The

author [6] gave a geometric interpretation of Honda’s work, and showed, e.g., that the

cubic polynomial 4X3 − 27 has the following property: For ξ ∈ Q chosen at random, the

class number of the field Q
(√

4ξ3 − 27
)

is divisible by 3 with “probability” greater than

or equal to 3/4.

On the other hand, J.-F. Mestre [5] used elliptic curves to find infinitely many imag-

inary and real quadratic fields whose 5-ranks or 7-ranks are at least 2. Mestre’s work is

based on scheme-theoretic argument, and the minimal models play an important role in

the proof.
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In the present paper, we study a way to construct cyclic extensions of number fields,

in which every finite place is unramified, from an elliptic curve with a rational torsion

point. Our method is similar to Mestre’s in a certain sense. However, we do not use

scheme theory nor minimal models. Instead of those tools, we use Vélu’s formulas [9]

(see Section 2) and the notion of “good points” on an elliptic curve with respect to a

Weierstrass equation (see Section 4).

Here we briefly state the main results. Let k be a number field of finite degree, and

let E be an elliptic curve defined over k which has a k-rational point T0 of prime order l.

We take a Weierstrass equation for E of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

with

a1, a2, a3, a4, a6, x(T0), y(T0) ∈ Ok

and we denote its discriminant by ∆. Here Ok denotes the ring of integers of k. Let

Y 2 + A1XY + A3Y = X3 + A2X
2 + A4X + A6

be the equation for E∗ = E/〈T0〉 and λ : E → E∗ the isogeny of kernel 〈T0〉 which are

given by Vélu’s formulas (E∗ is known to be an elliptic curve defined over k). Here 〈T0〉

denotes the subgroup of E(k) generated by T0. With the notation and the assumptions

described above, we can state the main results as follows:

We can construct a subset Ξ of k (for the definition, see Theorem 5.1) which satisfies

the following two properties :

(i) (Theorem 5.1) For any Q ∈ E∗ − {O} with X(Q) ∈ Ξ, the field k
(
λ−1(Q)

)
is a

cyclic extension of k(Q) of degree l in which every finite place is unramified.

(ii) (Corollary 6.4) The set Ξ has a positive density in k:

lim
B→∞

# {ξ ∈ Ξ ; Hk(ξ) ≤ B}
# {ξ ∈ k ; Hk(ξ) ≤ B}

=
r∏

i=1

Npi

Npi + 1
,

where Hk(ξ) denotes the exponential height relative to k of ξ. Here p1, . . . , pr denote the

distinct prime divisors of ∆ in k, and Npi denotes the absolute norm of pi.
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From these results, we conclude that the cubic polynomial

F (X) = 4X3 + (A2
1 + 4A2)X

2 + 2(A1A3 + 2A4)X + A2
3 + 4A6

has the following property:

Assume l 6= 2. Then the elements ξ ∈ k for which the class number of Kξ =

k
(√

F (ξ)
)

is divisible by l have a positive density in k:

lim inf
B→∞

#
{
ξ ∈ k ; l | hKξ

, Hk(ξ) ≤ B
}

# {ξ ∈ k ; Hk(ξ) ≤ B}
≥

r∏
i=1

Npi

Npi + 1
.

We close this section with an example (see Examples 2.4 and 6.7). Let E be the elliptic

curve defined over k = Q given by

y2 − 78xy + 6241y = x3 − 79x2,

whose discriminant is −795 · 7109, which has a rational point T0 = (0, 0) of order l = 5.

For this case, our results imply: For ξ ∈ Q chosen at random, the class number of

Q
(√

4ξ3 + 5768ξ2 + 8635964ξ + 10019781641
)

is divisible by 5 with “probability” greater than or equal to

79

79 + 1
· 7109

7109 + 1
= 0.9873 · · · .

2 Review of Vélu’s formulas

In this section, we briefly review Vélu’s formulas. For details, see Vélu’s original paper

[9] (cf. also [4]).

Let E be an elliptic curve defined over a perfect field k, and let Γ be a finite subgroup

of E which is invariant under the action of Gal(k̄/k). Here k̄ denotes an algebraic closure

of k and Gal( · ) the Galois group. Then there exist an elliptic curve E∗ and a separable

isogeny λ : E → E∗, which are defined over k, such that Ker λ = Γ. Such a pair (E∗, λ)
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is unique up to k-isomorphism, and E∗ is often denoted by E/Γ. Given Weierstrass

equation for E and the coordinates for the points in Γ, computing an equation for E∗ and

an explicit form for λ : E → E∗ of kernel Γ can be done by using Vélu’s formulas.

Let

(2.1) y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 (ai ∈ k)

be an equation for E. We define gx, gy ∈ k(E) by

(2.2) gx = 3x2 + 2a2x + a4 − a1y, gy = −2y − a1x − a3.

For P ∈ E − {O}, we shall write the values x(P ), y(P ), gx(P ), gy(P ) by xP , yP , gx
P , gy

P ,

respectively, and set

tP =

 gx
P if P ∈ E[2]

2gx
P − a1g

y
P otherwise

, uP = (gy
P )2.

Taking a set Γ0 ⊆ Γ of perfect representatives for (Γ − {O})/ ± 1, we put

t =
∑
T∈Γ0

tT , w =
∑
T∈Γ0

(uT + xT tT ).

These two quantities are in k, and do not depend on the choice of Γ0. Letting

A1 = a1, A2 = a2, A3 = a3, A4 = a4 − 5t, A6 = a6 − (a2
1 + 4a2)t − 7w,

we can state the formulas as follows:

The elliptic curve E∗ = E/Γ and the separable isogeny λ : E → E∗ of kernel Γ are

given by

(2.3) Y 2 + A1XY + A3Y = X3 + A2X
2 + A4X + A6

and by

(2.4)

X = x +
∑
T∈Γ0

(
tT

x − xT

+
uT

(x − xT )2

)
,

Y = y −
∑
T∈Γ0

(
uT

2y + a1x + a3

(x − xT )3
+ tT

a1(x − xT ) + y − yT

(x − xT )2
+

a1uT − gx
T gy

T

(x − xT )2

)
,

respectively.
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Remark 2.1 Expressions (2.4) are derived from

X = x +
∑

T∈Γ−{O}

(x ◦ τT − xT ), Y = y +
∑

T∈Γ−{O}

(y ◦ τT − yT ),

or equivalently,

X +
∑

T∈Γ−{O}

xT =
∑
T∈Γ

x ◦ τT , Y +
∑

T∈Γ−{O}

yT =
∑
T∈Γ

y ◦ τT

by using the addition formulas. Here τT denotes the translation-by-T -map on E. Note

that we regard k(E∗) as a subfield of k(E):

k(E∗) = {φ ∈ k(E) ; φ ◦ τT = φ for all T ∈ Γ} .

Thus we have

(2.5) XQ+
∑

T∈Γ−{O}

xT =
∑

P∈λ−1(Q)

xP , YQ+
∑

T∈Γ−{O}

yT =
∑

P∈λ−1(Q)

yP for Q ∈ E∗ − {O},

where XQ and YQ denote X(Q) and Y (Q), respectively.

Remark 2.2 One verifies that the invariant differential

ω(x, y) =
dx

−gy
=

dy

gx

on E associated with (2.1) is equal to the one

ω(X,Y ) =
dX

−GY
=

dY

GX

on E∗ associated with (2.3). Here we define GX , GY ∈ k(E∗) by

(2.6) GX = 3X2 + 2A2X + A4 − A1Y, GY = −2Y − A1X − A3.

Example 2.3 (The case of Γ ∼= Z/3Z) If E has a k-rational point T0 of order 3, then

E has an equation of the form

y2 + axy + by = x3
(
a, b ∈ k, b(a3 − 27b) 6= 0

)
with T0 = (0, 0), and E∗ = E/〈T0〉 is given by

Y 2 + aXY + bY = X3 − 5abX − a3b − 7b2.
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Example 2.4 (The case of Γ ∼= Z/5Z) If E has a k-rational point T0 of order 5, then

E has an equation of the form

y2 + (a + b)xy + ab2y = x3 + abx2
(
a, b ∈ k, ab(a2 + 11ab − b2) 6= 0

)
with T0 = (0, 0), and E∗ = E/〈T0〉 is given by

Y 2 + (a + b)XY + ab2Y = X3 + abX2 + 5(a3b − 2a2b2 − ab3)X

+ a5b − 10a4b2 − 5a3b3 − 15a2b4 − ab5.

Example 2.5 (The case of Γ ∼= Z/7Z) If E has a k-rational point T0 of order 7, then

E has an equation of the form

y2 + (a2 + ab − b2)xy + a3b2(a − b)y = x3 + ab2(a − b)x2(
a, b ∈ k, ab(a − b)(a3 + 5a2b − 8ab2 + b3) 6= 0

)
with T0 = (0, 0), and E∗ = E/〈T0〉 is given by

Y 2 + (a2 + ab − b2)XY + a3b2(a − b)Y

= X3 + ab2(a − b)X2

+ 5ab(a − b)(a2 − ab + b2)(a3 − 5a2b + 2ab2 + b3)X

+ ab(a − b)(a9 − 18a8b + 76a7b2 − 182a6b3 + 211a5b4

− 132a4b5 + 70a3b6 − 37a2b7 + 9ab8 + b9).

3 Consequences of the formulas

In this section, we study about the form of the isogeny λ : E → E∗ which is given by

Vélu’s formulas. Notation and assumptions are the same as in the previous section.

3.1 Relations among GX, GY and gx, gy The functions GX , GY ∈ k(E∗),

defined by (2.6), can be written by using gx, gy ∈ k(E), defined by (2.2), as

GX = mgx + n(gy)2, GY = mgy.

Here we define m,n ∈ k(E) by

m = 1 −
∑
T∈Γ0

(
tT

(x − xT )2
+

2uT

(x − xT )3

)
, n =

∑
T∈Γ0

(
tT

(x − xT )3
+

3uT

(x − xT )4

)
.
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Thus we have

(3.1) GX
Q = mP gx

P + nP (gy
P )2, GY

Q = mP gy
P for Q ∈ E∗ − {O} and P ∈ λ−1(Q),

where GX
Q , GY

Q, mP , nP denote GX(Q), GY (Q), m(P ), n(P ), respectively (note that m

and n are regular on E − Γ). These relations can be deduced from

dx

−gy
=

dy

gx
=

dX

−GY
=

dY

GX

(see Remark 2.2) combined with

dX = mdx, dY = −ngy dx + mdy.

3.2 Relation between X and x We can rewrite the former expression of (2.4)

into

X =
I(x)

J(x)

with

I(x) = xl −
( ∑

T∈Γ−{O}

xT

)
xl−1 + · · · ,

J(x) =
∏

T∈Γ−{O}

(x − xT ) = xl−1 −
( ∑

T∈Γ−{O}

xT

)
xl−2 + · · · ,

where l = #Γ (= deg λ). It is easy to verify that all the coefficients of I(x) and J(x) are

in k. Moreover, since [k(x) : k(X)] is equal to [k(E) : k(E∗)] = l, these polynomials do

not have any common root.

Let Q be a point on E∗ with [2]Q 6= O. Then, for each P ∈ λ−1(Q), we have

P 6= O, J(xP ) 6= 0 and I(xP ) − XQJ(xP ) = 0. Therefore we conclude

(3.2) I(x) − XQJ(x) =
∏

P∈λ−1(Q)

(x − xP ),

since the assumption [2]Q 6= O implies

#
{
xP ; P ∈ λ−1(Q)

}
= #λ−1(Q) = l.
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3.3 The field extensions arising from λ Let Q be a point on E∗ with [2]Q 6= O.

We denote the fields

k(Q) = k(XQ, YQ), k
(
λ−1(Q)

)
= k

(
xP , yP ; P ∈ λ−1(Q)

)
by K,K ′, respectively. Since the isogeny λ is defined over k, we have K ⊆ K ′.

Now, we assume that the the field k is not of characteristic 2. Then we have

K = k(XQ, GY
Q), K ′ = k

(
xP , gy

P ; P ∈ λ−1(Q)
)
.

Here, it follows from (3.1) and the assumption [2]Q 6= O (i.e. GY
Q 6= 0) that mP 6= 0 and

gy
P = m−1

P GY
Q ∈ k(xP , GY

Q). Therefore we conclude

(3.3) K ′ = K
(
xP ; P ∈ λ−1(Q)

)
.

Thus K ′ is the splitting field of the polynomial I(x) − XQJ(x) over K (see (3.2)).

4 Relation with reduction maps

In this section, we shall apply Vélu’s formulas to elliptic curves of certain type, and

study about the relation among the isogeny and the reduction maps with respect to a

non-archimedean valuation on the ground field.

Let k be a perfect field, and let v be a non-archimedean valuation on k. We denote the

valuation ring, the valuation ideal and the residue field by Ov, pv and by κv, respectively.

For a ∈ Ov, we sometimes denote the element a mod pv of κv by ã.

Let E be an elliptic curve defined over k which has a k-rational point T0 of prime

order l. Then we can take a Weierstrass equation for E of the form

(4.1) y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

with

(4.2) a1, a2, a3, a4, a6, xT0 , yT0 ∈ Ov.

We fix such an equation and consider the reduction of E modulo pv. That is, let Ẽ =

E mod pv be the curve defined over κv which is given by

(4.3) y2 + ã1xy + ã3y = x3 + ã2x
2 + ã4x + ã6,
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and let

E(k) 3 P 7−→ P̃ = P mod pv ∈ Ẽ(κv)

be the reduction of E modulo pv with respect to Equation (4.1). Using the reduction map,

we define two subsets of E(k) as

E0(k; pv) =
{

P ∈ E(k) ; P̃ ∈ Ẽns(κv)
}

, E+(k; pv) =
{

P ∈ E(k) ; P̃ = Õ
}

.

We call P ∈ E(k) is good modulo pv with respect to (4.1) if it belongs to E0(k; pv) (we

often omit the phrase “modulo pv with respect to . . . ”). Similarly, we call P ∈ E(k) is bad

if it does not belong to E0(k; pv). Then clearly {O} ⊆ E+(k; pv) ⊆ E0(k; pv). Moreover, it

is easy to observe:

Proposition 4.1 (i) For P ∈ E(k) − {O}, we have

P ∈ E+(k; pv) ⇐⇒ xP 6∈ Ov ⇐⇒ yP 6∈ Ov.

(ii) For P ∈ E(k) − E+(k; pv), we have

P 6∈ E0(k; pv) ⇐⇒ gx
P ≡ gy

P ≡ 0 (mod pv).

Remark 4.2 Whether a point P ∈ E(k) is good or bad is determined only by a

congruent condition for its x-coordinate modulo pv. More precisely, putting ∆ the dis-

criminant of (4.1), we have:

(i) If ∆ 6≡ 0 (mod pv), then every P ∈ E(k) is good.

(ii) If ∆ ≡ 0 (mod pv), then P ∈ E(k) is bad if and only if xP ∈ Ov and
f(xP ) ≡ f ′(xP ) ≡ 0 (mod pv) if 2 6≡ 0 (mod pv)

x2
P ≡ a4 (mod pv) if 2 ≡ a1 ≡ 0 (mod pv)

xP ≡ a3/a1 (mod pv) if 2 ≡ 0, a1 6≡ 0 (mod pv)

hold. Here we define a cubic polynomial f(x) by

f(x) = 4x3 + (a2
1 + 4a2)x

2 + 2(a1a3 + 2a4)x + a2
3 + 4a6.

Note the sets E0(k; pv) and E+(k; pv) defined above are not uniquely determined by

k, v and by E. However, one can verify the following (cf., e.g., [8, Chapter VII, Proposi-

tion 2.1]):
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Proposition 4.3 The set E0(k; pv) is a subgroup of E(k), and the map

E0(k; pv) 3 P 7−→ P̃ ∈ Ẽns(κv)

is a group homomorphism of kernel E+(k; pv).

Let Γ be the subgroup of E(k) generated by T0. Then Γ is of prime order l, and its

subgroups Γ ∩ E0(k; pv) and Γ ∩ E+(k; pv) must coincide with {O} or Γ. On the other

hand, the assumption xT0 , yT0 ∈ Ov implies T0 6∈ E+(k; pv). Thus we have:

Corollary 4.4 (i) Γ ∩ E0(k; pv) coincides with {O} or Γ.

(ii) Γ ∩ E+(k; pv) = {O}.

We note that the corollary above implies

(4.4) xT , yT , gx
T , gy

T , tT , uT ∈ Ov for all T ∈ Γ − {O}.

Now, let

(4.5) Y 2 + A1XY + A3Y = X3 + A2X
2 + A4X + A6

be the equation for the elliptic curve E∗ = E/Γ and λ : E → E∗ the isogeny which are

given by Vélu’s formulas. Then the assumption (4.2) together with (4.4) imply

A1, A2, A3, A4, A6 ∈ Ov.

Moreover, one easily observes that all the coefficients of the polynomials I(x) and J(x),

defined in Section 3.2, are in Ov. Let Ẽ∗ = E∗ mod pv be the curve defined over κv which

is given by

(4.6) y2 + Ã1xy + Ã3y = x3 + Ã2x
2 + Ã4x + Ã6,

and let

E∗(k) 3 Q 7−→ Q̃ = Q mod pv ∈ Ẽ∗(κv)

be the reduction of E∗ modulo pv with respect to (4.5). Using the reduction map, we

define E∗
0(k; pv), E∗

+(k; pv) ⊆ E∗(k) in the same manner as for E. Then we can obtain the

same ones for E∗ as Proposition 4.1, Remark 4.2 and Proposition 4.3.
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With the notation and the assumptions described above, we have the following the-

orem, which asserts that the inverse image by λ of every good point contains a good

point:

Theorem 4.5 Let Q be a point in E∗
0(k; pv) such that λ−1(Q) ⊆ E(k). Then at least

one point in λ−1(Q) is contained in E0(k; pv):

λ−1(Q) ∩ E0(k; pv) 6= ∅.

Proof. Since the assertion is clear if Q = O, we assume Q 6= O. As mentioned in

Corollary 4.4, the set Γ ∩ E0(k; pv) coincides with {O} or Γ.

(i) We first consider the case Γ∩E0(k; pv) = {O}, i.e. the case where every T ∈ Γ−{O}

is bad. In that case, it follows from Proposition 4.1 that each T ∈ Γ − {O} satisfies

gx
T ≡ gy

T ≡ 0 (mod pv), and hence tT ≡ uT ≡ 0 (mod pv). Therefore we have t ≡ w ≡ 0

(mod pv) and

A1 = a1, A2 = a2, A3 = a3, A4 ≡ a4 (mod pv), A6 ≡ a6 (mod pv).

Thus Equation (4.6) for Ẽ∗ coincides with Equation (4.3) for Ẽ. We also note that all

T ∈ Γ− {O} are reduced into the same point. That is, writing α the x-coordinate of the

(unique) singular point on Ẽ, we have x̃T = α for all T ∈ Γ − {O}.

Now, suppose λ−1(Q) ∩ E0(k; pv) = ∅. Then every P ∈ λ−1(Q) is bad, and hence

satisfies x̃P = α. Consequently, it follows from (2.5) that XQ ∈ Ov and X̃Q = α.

Therefore we conclude Q 6∈ E∗
0(k; pv), which contradicts the assumption.

(ii) We next consider the case Γ ∩ E0(k; pv) = Γ, i.e. the case where every T ∈ Γ is

good. In that case, we have λ−1(Q) ⊆ E0(k; pv). Indeed, if λ−1(Q) has a bad point P , then

we have xP , yP ∈ Ov and gx
P ≡ gy

P ≡ 0 (mod pv). Moreover, the assumption Γ ⊆ E0(k; pv)

implies xP 6≡ xT (mod pv) for all T ∈ Γ − {O}, and hence we obtain XQ, YQ ∈ Ov by

(2.4). On the other hand, it follows from (3.1) that GX
Q ≡ GY

Q ≡ 0 (mod pv). Thus we

conclude Q 6∈ E∗
0(k; pv), which contradicts the assumption. ¤

Remark 4.6 From the argument in the above proof, one observes that the condition

∆ ≡ 0 (mod pv) implies ∆∗ ≡ 0 (mod pv). Here ∆∗ denotes the discriminant of (4.5).
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5 Construction of unramified extensions

From now on, k denotes a number field of finite degree, and we denote its ring of

integers by Ok.

Let E be an elliptic curve defined over k which has a k-rational point T0 of prime

order l. Then we can take a Weierstrass equation for E of the form

(5.1) y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

with

a1, a2, a3, a4, a6, xT0 , yT0 ∈ Ok.

Let Γ be the subgroup of E(k) generated by T0. Then it follows from the local argument

in Section 4 that

(5.2) xT , yT , gx
T , gy

T , tT , uT ∈ Ok for all T ∈ Γ − {O}.

Thus, letting

(5.3) Y 2 + A1XY + A3Y = X3 + A2X
2 + A4X + A6

be the equation for the elliptic curve E∗ = E/Γ and λ : E → E∗ the isogeny of kernel Γ

which are given by Vélu’s formulas, we have

A1, A2, A3, A4, A6 ∈ Ok.

We also note that all the coefficients of the polynomials I(x) and J(x), defined in Sec-

tion 3.2, are in Ok.

Now, we define a cubic polynomial F (X) by

F (X) = 4X3 + (A2
1 + 4A2)X

2 + 2(A1A3 + 2A4)X + A2
3 + 4A6,

and put Kξ = k
(√

F (ξ)
)

for ξ ∈ k. For Q ∈ E∗ − {O} with XQ = ξ ∈ k, it is easy to

verify that the field Kξ coincides with k(Q). We also define a polynomial Λξ(x) of degree

l by

Λξ(x) = I(x) − ξJ(x)
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for each ξ ∈ k. Let ∆ and ∆∗ denote the discriminants of (5.1) and (5.3), respectively.

For each prime divisor p of ∆ in k (it is also a prime divisor of ∆∗ by Remark 4.6), let

Xbad(k; p) be the set of such ξ ∈ Ok,p that satisfy the condition
F (ξ) ≡ F ′(ξ) ≡ 0 (mod p) if 2 6≡ 0 (mod p)

ξ2 ≡ A4 (mod p) if 2 ≡ A1 ≡ 0 (mod p)

ξ ≡ A3/A1 (mod p) if 2 ≡ 0, A1 6≡ 0 (mod p)

(cf. Remark 4.2). Here Ok,p denotes the localization of Ok at p. One might call Xbad(k; p)

the set of bad X-coordinates on E∗ modulo p with respect to (5.3).

With the notation and the assumptions described above, we have:

Theorem 5.1 Let Ξ be the set of such ξ ∈ k that satisfy the following three conditions :

(C0) F (ξ) 6= 0.

(C1) Λξ(x) is irreducible over k.

(C2) ξ 6∈ Xbad(k; p) for all prime divisors p of ∆ in k.

Then, for any Q ∈ E∗ − {O} with XQ ∈ Ξ, the field k
(
λ−1(Q)

)
is a cyclic extension of

k(Q) of degree l in which every finite place is unramified.

Since a Galois extension of odd degree is unramified at every infinite place, by using

the class field theory, we obtain the following:

Corollary 5.2 Suppose l 6= 2. Then, for any ξ ∈ Ξ, the class number of the field Kξ

is divisible by l.

Remark 5.3 Setting a = 0 in Example 2.3 (the case of l = 3), we have F (X) =

4X3 − 27b2, which the author studied in [6].

Remark 5.4 In the case where the field k is totally imaginary, one has the same

result as the corollary above even if l = 2.

Now, we give a proof of Theorem 5.1. Roughly speaking, our method to prove the

theorem is similar to the proof of the Weak Mordell-Weil Theorem (see, e.g., [8, Chap-

ter VIII, Section 1]). We shall use Theorem 4.5 in place of the direct calculation in

[6].
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At first, we fix a point Q ∈ E∗ − {O} with XQ = ξ ∈ Ξ, and put

K = k(Q) (= Kξ), K ′ = k
(
λ−1(Q)

)
.

Then:

Lemma 5.5 (i) K ′ is a cyclic extension of K of degree l.

(ii) For any P ∈ λ−1(Q), we have K ′ = K(P ).

(iii) The map

ι : Gal(K ′/K) 3 σ 7−→ P σ − P ∈ Γ

(P is a point in λ−1(Q)) is a group isomorphism.

Proof. It is immediate from Γ ⊆ E(k) ⊆ E(K) and Q ∈ E∗(K) that K ′/K is a

Galois extension, K ′ = K(P ) holds for any P ∈ λ−1(Q) and that ι is an injective group

homomorphism. Thus we have only to show that ι is surjective.

Since the group Γ is of prime order l, its subgroup Im ι must coincide with {O} or Γ.

Moreover, the assumption (C0) implies that K ′ is the splitting field of Λξ(x) over K (see

(3.3)). Hence we conclude Im ι = Γ by the assumption (C1). ¤

Next, we fix a prime ideal P in K and show that K ′/K is unramified at P. Since

[K ′ : K] = l is prime, we may assume that P is not decomposed in K ′. Let P′ denote the

unique prime divisor of P in K ′ and κ′ its residue field. Let

E(K ′) 3 P 7−→ P mod P′ ∈ (E mod P′)(κ′)

be the reduction of E modulo P′ with respect to (5.1). Using the reduction map, we define

E0(K
′; P′), E+(K ′; P′) ⊆ E(K ′) in the same manner as in Section 4. These subsets are

Gal(K ′/K)-invariant subgroups of E(K ′), for we have assumed that P is not decomposed

in K ′. Therefore, putting IP′/P the inertia group for P′/P, we have P σ −P ∈ E+(K ′; P′)

for any P ∈ E0(K
′; P′) and any σ ∈ IP′/P. In particular, taking P from λ−1(Q) ∩

E0(K
′; P′), which is a nonempty set by the assumption (C2) and Theorem 4.5, we obtain

P σ − P ∈ Γ ∩ E+(K ′; P′)
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for all σ ∈ IP′/P. However, it follows from (5.2) that Γ ∩ E+(K ′; P′) = {O}, and hence

the point P is invariant under the action of σ ∈ IP′/P. On the other hand, we also have

K ′ = K(P ). Thus we conclude IP′/P = {1}. That is, K ′/K is unramified at P, which

completes the proof of Theorem 5.1.

6 The density of Ξ

In this section, we show that the set Ξ defined in the previous section has a positive

density in k with respect to a height function. For a k-rational point P ∈ Pd−1(k) on

(d − 1)-dimensional projective space, we denote its exponential height relative to k by

Hk(P ) (for the definition and the basic properties of heights, see, e.g., [1, Part B]). Then,

as was shown by Schanuel [7], one has

(6.1) #
{
P ∈ Pd−1(k) ; Hk(P ) ≤ B

}
∼ Cd,k Bd

as B → ∞. Here Cd,k is a positive constant depending only on d and k which can be

written in an explicit form. We regard P1(k) as k ∪ {∞}, and study the asymptotic

behavior of the counting function # {ξ ∈ Ξ ; Hk(ξ) ≤ B}.

Recall that the set Ξ is defined by using three conditions (C0)–(C2). Among them, the

condition (C0) holds for all but finitely many ξ ∈ k (there are at most three exceptions).

Thus we may omit the condition (C0). On the other hand, we can estimate the number

of such ξ ∈ k that do not satisfy the condition (C1) as follows:

Lemma 6.1 We have

# {ξ ∈ k ; Λξ(x) is reducible over k, Hk(ξ) ≤ B} ³ B2/l

as B → ∞.

Proof. We first show that, for ξ ∈ k with F (ξ) 6= 0, the following conditions are

equivalent:

(a) Λξ(x) is reducible over k.

(b) Λξ(x) has a root in k.

(b)′ ξ = I(ζ)/J(ζ) holds for some ζ ∈ k satisfying J(ζ) 6= 0.
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Clearly, (b) implies (a). It is also immediate to see the equivalence between (b) and (b)′.

Thus we have only to show that (a) implies (b). The assertion is obvious in the case where

l = 2, and we shall assume l 6= 2 for the time being. Then, for ξ ∈ k with F (ξ) 6= 0, one

can show that the following conditions are equivalent in a similar fashion to the proof of

Lemma 5.5:

(A) Λξ(x) is reducible over Kξ.

(B) Λξ(x) is decomposed into linear factors over Kξ.

Here, clearly (a) implies (A). Moreover, since l is assumed to be odd, it follows from

[Kξ : k] ≤ 2 that (B) implies (b). Consequently, for ξ ∈ k with F (ξ) 6= 0, the five

conditions described above are equivalent (under the assumption l 6= 2).

By the equivalence between (a) and (b)′, we obtain

# {ξ ∈ k ; Λξ(x) is reducible over k, Hk(ξ) ≤ B} ³ #
{
ζ ∈ k ; Hk

(
I(ζ)/J(ζ)

)
≤ B

}
.

On the other hand, since I(x)/J(x) is a rational function of degree l, we observe

Hk

(
I( · )/J( · )

)
³ Hk( · )l

on k. Hence we conclude the assertion by the asymptotic formula (6.1). ¤

Now, we study about the condition (C2). Recall that the sets Xbad(k; p) are defined

for prime divisors p of ∆ in k. It follows from the definition that, for each p, there exists

a point ξp ∈ P1(Ok/p) − {∞} such that

Xbad(k; p) =
{
ξ ∈ P1(k) ; ξ mod p = ξp

}
.

The distribution of rational points on a projective space with such conditions on reductions

as above can be estimated as follows:

Lemma 6.2 Let p1, . . . , pr be distinct prime ideals in a number field k of finite degree.

Then, for every (P1, . . . , Pr) ∈
∏r

i=1 Pd−1(Ok/pi), we have

#
{
P ∈ Pd−1(k) ; P mod pi = Pi for all i, Hk(P ) ≤ B

}
∼

(
r∏

i=1

Npi − 1

Npd
i − 1

)
Cd,k Bd

as B → ∞. Here Npi denotes the absolute norm of pi.
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The lemma above can be shown in a similar (but more complicated) way to Schanuel’s

original proof (see also Watanabe [10, Example 1], which treats a modified height func-

tion).

Summing up the asymptotic formulas described above, we obtain:

Theorem 6.3 We have

# {ξ ∈ Ξ ; Hk(ξ) ≤ B} ∼

(
r∏

i=1

Npi

Npi + 1

)
C2,k B2

as B → ∞. Here p1, . . . , pr denote the distinct prime divisors of ∆ in k.

Corollary 6.4 The set Ξ has a positive density in k in the following sense:

lim
B→∞

# {ξ ∈ Ξ ; Hk(ξ) ≤ B}
# {ξ ∈ k ; Hk(ξ) ≤ B}

=
r∏

i=1

Npi

Npi + 1
.

Remark 6.5 For an extension K of k, one can show that

# {ξ ∈ Ξ ; Kξ = K, Hk(ξ) ≤ B} ³ (log B)r/2

holds for some r ∈ Z≥0. Thus the family {Kξ}ξ∈Ξ of (at most quadratic) extensions of k,

parametrized by Ξ, consists of infinitely many fields.

Now, we assume l 6= 2. Then it follows from Corollaries 5.2 and 6.4 that the elements

ξ ∈ k for which the class number of Kξ = k
(√

F (ξ)
)

is divisible by l have a positive

density in k:

lim inf
B→∞

#
{
ξ ∈ k ; l | hKξ

, Hk(ξ) ≤ B
}

# {ξ ∈ k ; Hk(ξ) ≤ B}
≥

r∏
i=1

Npi

Npi + 1
.

Thus one might say: For ξ ∈ k chosen at random, the class number of the field Kξ is

divisible by l with “probability” greater than or equal to
∏

i Npi/(Npi + 1).

Example 6.6 Putting k = Q, a = 98 and b = −1 in Example 2.3, we obtain

F (X) = 4X3 + 9604X2 + 1764X + 3764741, ∆ = −101 · 9319.

Thus, for ξ ∈ Q, the class number of Q
(√

F (ξ)
)

is divisible by 3 with “probability”

greater than or equal to

101

101 + 1
· 9319

9319 + 1
= 0.9900 · · · .
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Example 6.7 Putting k = Q, a = 1 and b = −79 in Example 2.4, we obtain

F (X) = 4X3 + 5768X2 + 8635964X + 10019781641, ∆ = −795 · 7109.

Thus, for ξ ∈ Q, the class number of Q
(√

F (ξ)
)

is divisible by 5 with “probability”

greater than or equal to
79

79 + 1
· 7109

7109 + 1
= 0.9873 · · · .

Example 6.8 Putting k = Q, a = 4 and b = −97 in Example 2.5, we obtain

F (X) = 4X3 + 110872905X2 + 6379117545341648X + 66809139857632818992656,

∆ = −214 · 977 · 1017 · 1221457.

Thus, for ξ ∈ Q, the class number of Q
(√

F (ξ)
)

is divisible by 7 with “probability”

greater than or equal to

2

2 + 1
· 97

97 + 1
· 101

101 + 1
· 1221457

1221457 + 1
= 0.6533 · · · .
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