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Abstract

We introduce a simple way to construct a family of number fields of given degree

with class numbers divisible by a given integer, by using the arithmetic theory of

elliptic curves. In particular, we start with an elliptic curve defined over the rational

number field with a rational torsion point of order l ∈ {3, 5, 7}, and show a way

to construct infinitely many number fields of given odd degree d ≥ 3 with class

numbers divisible by l.
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1 Introduction

The divisibility of class numbers, not only for quadratic number fields but also for

arbitrary number fields, has been studied for a long time. For example, Azuhata and

Ichimura (1984) proved that, for any integers d ≥ 2 and l ≥ 2, there exist infinitely many

number fields of degree d with class numbers divisible by l. In fact, they proved a much

deeper theorem. Combining with a work of Nakano (1985), we can rewrite the theorem

into the following form: There exist infinitely many number fields with prescribed number

of real and imaginary places with class numbers divisible by a given integer. The proof

of this theorem, due to Azuhata-Ichimura and Nakano, also describes a way to construct

such number fields. However, in order to construct them in practice, we have to check a

number of conditions.
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In the present paper, we introduce a simple way to construct, from an elliptic curve

with a rational torsion point of prime order l 6= 2 (hence l ∈ {3, 5, 7}, because of Mazur’s

theorem), infinitely many number fields of given odd degree d ≥ 3 with class numbers di-

visible by l. Our result states nothing new about the existence of number fields. However,

our way is so simple that we can construct such number fields very easily.

We close the present section with giving an example (see Example 5.1). Let a be a

positive integer, and let E be an elliptic curve given by

y2 + ay = x3,

which has a rational point (0, 0) of order three. For this case, our results imply: Let c be

a positive integer satisfying gcd(c, 3a) = 1, and suppose that the polynomial

4(x3 + a2)d − 27a2(x3 + a2)d−3 x6 − c2 x2d

is irreducible over the rational number field (d ≥ 3 is an odd integer, as mentioned above).

Then, for any root ξ of 4Xd − 27a2Xd−3 − c2, the number field obtained by adjoining ξ to

the rational number field is of degree d with class number divisible by three.

2 The Field Extensions Arising from an Isogeny

Before describing the main results, we shall briefly review some properties about an

isogeny of elliptic curves, which plays an important role in our theory, in the general

setting. We also observe how to obtain number fields with class numbers divisible by l

from an isogeny of degree l.

Let k be a number field of finite degree, and let E be an elliptic curve defined over k

which has a k-rational point T0 of prime order l. Then we can take a Weierstrass equation

for E of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

with

a1, a2, a3, a4, a6, x(T0), y(T0) ∈ Ok.

Here Ok denotes the ring of integers of k. Let

Y 2 + A1XY + A3Y = X3 + A2X
2 + A4X + A6
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be a defining equation for E∗ = E/〈T0〉 and λ : E → E∗ the isogeny of kernel 〈T0〉

which are given by Vélu’s formulas (for the formulas, see Vélu (1971), Section 12.3 of

Washington (2008) or Section 2 of Sato (2008)). Here 〈T0〉 denotes the subgroup of E(k)

generated by T0.

Let Q be a point on E∗. We denote the fields k(Q) = k(X(Q), Y (Q)) and k(λ−1(Q)) =

k(x(P ), y(P ) ; P ∈ λ−1(Q)) by K and L, respectively. Then, L/K is a Galois extension,

L = K(P ) holds for any P ∈ λ−1(Q), and the map

Gal(L/K) 3 σ 7−→ P σ − P ∈ 〈T0〉

(P is a point in λ−1(Q)) is an injective group homomorphism. Since #〈T0〉 = l is prime,

the extension L/K is cyclic of degree l if the following condition is satisfied (otherwise we

have L = K):

(C1) Q 6∈ λ(E(K)).

In Sato (2008), the author studied about the ramification in L/K, and obtained a

sufficient condition for which the extension is unramified at every finite place. The main

results in that paper (Theorems 4.5 and 5.1) can be rephrased as follows: Let p be a prime

ideal in k, and let Ẽ∗ = E∗ mod p be the curve, defined over the residue field Ok/p, which

is given by

y2 + Ã1xy + Ã3y = x3 + Ã2x
2 + Ã4x + Ã6,

where Ãi denotes the image of Ai in Ok/p (we have A1, A2, A3, A4, A6 ∈ Ok). Let P be

a prime divisor of p in K. Then L/K is unramified at P if the image of Q on Ẽ∗ is

nonsingular.

Using the facts described above, we can construct number fields with class numbers

divisible by l. In fact, the extension L/K is unramified at every finite place if we can

choose Q so that the following condition is satisfied:

(C2) The image of Q on E∗ mod p is nonsingular for every p.

If l 6= 2 (or if K is totally imaginary), the extension is also unramified at every infinite

place. Therefore, the two conditions (C1) and (C2) imply that the class number of K is
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divisible by l, for the Hilbert class field of K contains L. Moreover, if Q satisfies Z(Q) ∈ k

for some function Z ∈ k(E∗) of degree d, we may expect

(C3) [K : k] = d.

In the case where Z = X (hence d = 2) and [2]Q 6= O, we can write down the two

conditions (C1) and (C2), in terms of the X-coordinate of Q, in an explicit form (see

Theorem 5.1 of Sato (2008)). We can also estimate the density of such X-coordinates in

k that satisfy the two conditions (see Corollary 6.4 of Sato (2008)). In that case, we have

either [K : k] = 2 or K = k. Thus, putting k = Q (hence l ∈ {3, 5, 7}), we can obtain

quadratic number fields with class numbers divisible by l. Indeed, if the class number of

K is divisible by l, we cannot have K = Q.

In what follows, we shall apply the above scheme to construct number fields of given

odd degree d ≥ 3 with class numbers divisible by l. That is, putting k = Q and Z =

X(d−3)/2 (2Y + A1X + A3), we study the three conditions (C1), (C2) and (C3) for such

points Q that satisfy Z(Q) ∈ Q. We can also construct number fields of even degree d ≥ 2

with the same property by putting Z = Xd/2. However we shall not treat the even case

in the present paper.

3 Main Results

Let d ≥ 3 be an odd integer, and let E be an elliptic curve defined over Q which has a

rational point T0 of prime order l 6= 2 (thus l ∈ {3, 5, 7}). We take a Weierstrass equation

for E of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

with

a1, a2, a3, a4, a6, x(T0), y(T0) ∈ Z.

Let

(∗) Y 2 + A1XY + A3Y = X3 + A2X
2 + A4X + A6
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be the equation for E∗ = E/〈T0〉 and λ : E → E∗ the isogeny of kernel 〈T0〉 which are

given by Vélu’s formulas. Then, we have A1, A2, A3, A4, A6 ∈ Z, and λ is given by

X =
I(x)

J(x)

(we shall omit the expression for Y ) with monic polynomials I(x), J(x) ∈ Z[x] satisfying

deg I(x) = l, deg J(x) = l − 1. Furthermore, we denote the discriminant of Equation (∗)

by ∆∗, and define polynomials F (X) and H(Z ; x) by

F (X) = 4X3 + (A2
1 + 4A2)X

2 + 2(A1A3 + 2A4)X + A2
3 + 4A6

and by

H(Z ; x) = 4I(x)d + (A2
1 + 4A2)I(x)d−1J(x)

+ 2(A1A3 + 2A4)I(x)d−2J(x)2 + (A2
3 + 4A6)I(x)d−3J(x)3 − Z2J(x)d,

respectively. With the notation and the assumptions described above, we can state the

main theorem, which we will show in the next section:

Theorem 3.1 Let the notation and the assumptions be as above, and let c be a nonzero

rational number which satisfies the following two conditions:

(a) ordp c ≤ 0 for any prime divisor p of ∆∗.

(b) H(c ; x) is irreducible over Q.

Here ordp denotes the normalized additive valuation for p. Then, for any root ξ of the

polynomial Xd−3 F (X)−c2, the number field Q(ξ) is of degree d with class number divisible

by l.

For a nonzero integer c, the condition (a) in the above theorem is equivalent to

gcd(c, ∆∗) = 1. Hence it follows from a variant of Hilbert’s irreducibility theorem (see,

e.g., Chapter 9 of Lang (1983)) that there exist infinitely many integers c such that the

two conditions in the theorem are satisfied. Indeed, as we will see in the next section,

the polynomial H(Z ; x) is irreducible over the rational function field Q(Z). Moreover,

by using Siegel’s theorem on the finiteness of integral points on a curve of genus one (see,

e.g., Chapter IX of Silverman (1986)) we can show the following:

Corollary 3.2 By varying positive integers c in the above theorem, we can obtain in-

finitely many number fields of degree d with class number divisible by l.
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4 Proof of Theorem 3.1

Let the notation and the assumptions be the same as in the previous section. First,

we study about the polynomials F (X) and H(Z ; x), especially their origins. We denote

the function fields Q(E) = Q(x, y) and Q(E∗) = Q(X,Y ) by L and K, respectively. We

can regard L as a cyclic extension of K of degree l, and then L = K(x). Now we note that

Equation (∗) for E∗ can be rewritten as

(2Y + A1X + A3)
2 = F (X).

Putting Z = X(d−3)/2 (2Y + A1X + A3) ∈ K, which is of degree d, we can also rewrite the

equation as

Z2 = Xd−3 F (X).

Here we shall regard the function Z as a morphism from E∗ to the projective line P1, and

we denote the function field Q(P1) = Q(Z) by F. We can regard K as an extension of F

of degree d, and then K = F(X). Thus we obtain the following tower of function fields:

L = K(x)

l
∣∣∣ I(x) − XJ(x) = 0

K = F(X)

d
∣∣∣ Xd−3 F (X) − Z2 = 0

F = Q(Z)

Hence we have L = F(x). Since the polynomial H(Z ; x), which is of degree d l with

respect to x, is defined so that

H(Z ; x)

J(x)d
=

(
I(x)

J(x)

)d−3

F

(
I(x)

J(x)

)
− Z2

holds, we conclude that H(Z ; x) is irreducible over F (if we regard x as an indeterminate).

Next, we specialize the argument described above, and study the meaning of the

assumption (b) in the theorem. Let c and ξ be as in the statement of the theorem. Then

there exists a (unique) point Q on E∗ which satisfies X(Q) = ξ and Z(Q) = c. Since

c 6= 0, we have F (ξ) 6= 0, and hence [2]Q 6= O. We put K = Q(Q) and L = Q
(
λ−1(Q)

)
,

which are the specializations of K and L, respectively. Then, as discussed in Section 2,

L/K is a cyclic extension. In the present case, we have K = Q(ξ) and [K : Q] ≤ d.
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Moreover, we can obtain L = K(ω) and [L : K] ≤ l, where ω is a root of the polynomial

I(x)− ξJ(x) (we also have J(ω) 6= 0). In fact, L is the splitting field of I(x)− ξJ(x) over

K (see Section 3.3 of Sato (2008)). Thus we obtain the following tower of number fields:

L = K(ω)

l ≥
∣∣∣ I(ω) − ξJ(ω) = 0, J(ω) 6= 0

K = Q(ξ)

d ≥
∣∣∣ ξd−3 F (ξ) − c2 = 0

Q

Hence we have L = Q(ω) and H(c ; ω) = 0. Therefore the assumption (b) in the theorem

implies [K : Q] = d and [L : K] = l, for H(c ; x) is of degree d l. The former equality

is nothing but the condition (C3) in Section 2, and the latter one is equivalent to the

condition (C1).

Finally, we show that the assumption (a) in the theorem implies the condition (C2).

Let p be a prime number, and let Ẽ∗ = E∗ mod p be the curve, defined over Z/pZ, which

is given by

y2 + Ã1xy + Ã3y = x3 + Ã2x
2 + Ã4x + Ã6,

where Ãi denotes the image of Ai in Z/pZ. Let P be a prime divisor of p in K. Our

goal is to show that the image of Q on Ẽ∗ is nonsingular. Clearly we may assume that p

divides ∆∗. Then the assumption (a) implies

d − 3

2
ordP X(Q) + ordP

(
2Y (Q) + A1X(Q) + A3

)
≤ 0.

Here ordP denotes the normalized additive valuation for P. If ordP X(Q) < 0, we have

ordP Y (Q) < 0, and hence Q is reduced into the point at infinity, which is a nonsingular

point on Ẽ∗. If ordP X(Q) ≥ 0, we have ordP Y (Q) ≥ 0, and hence it follows from the

above inequality that

ordP

(
2Y (Q) + A1X(Q) + A3

)
= 0,

which implies that the image of Q on Ẽ∗ is nonsingular.

5 Examples

In order to construct the number fields Q(ξ) described in Theorem 3.1 in practice,

we need to prepare four data ∆∗, I(x), J(x) and F (X). We close the present paper with
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giving some examples.

Example 5.1 (The case of l = 3) If E has a rational point T0 of order three, E has an

equation of the form

y2 + axy + a2by = x3 (a, b ∈ Z, ab(a − 27b) 6= 0)

or

y2 + ay = x3 (a ∈ Z, a 6= 0)

with T0 = (0, 0).

(i) In the former case, E∗ is given by

Y 2 + aXY + a2bY = X3 − 5a3bX − a4b(a + 7b),

which has ∆∗ = a8b(a − 27b)3, with

I(x) = x3 + a3bx + a4b2, J(x) = x2.

Consequently we have

F (X) = 4X3 + a2X2 − 18a3bX − a4b(4a + 27b).

(ii) In the latter case, E∗ is given by

Y 2 + aY = X3 − 7a2,

which has ∆∗ = −39 a4, with

I(x) = x3 + a2, J(x) = x2.

Consequently we have

F (X) = 4X3 − 27a2.

Example 5.2 (The case of l = 5) If E has a rational point T0 of order five, E has an

equation of the form

y2 + (a + b)xy + ab2y = x3 + abx2 (a, b ∈ Z, ab 6= 0)
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with T0 = (0, 0). Then E∗ is given by

Y 2 + (a + b)XY + ab2Y = X3 + abX2 + 5ab(a2 − 2ab − b2)X

+ ab(a4 − 10a3b − 5a2b2 − 15ab3 − b4),

which has ∆∗ = −ab(a2 + 11ab − b2)5, with

I(x) = x5 + 2abx4 − ab(a2 − 3ab − b2)x3 + 3a2b3(a + b)x2 + a3b4(a + 3b)x + a4b6,

J(x) = x2(x + ab)2.

Consequently we have

F (X) = 4X3 + (a2 + 6ab + b2)X2 + 2ab(10a2 − 19ab − 9b2)X

+ ab(4a4 − 40a3b − 20a2b2 − 59ab3 − 4b4).

Example 5.3 (The case of l = 7) If E has a rational point T0 of order seven, E has an

equation of the form

y2 + (a2 + ab − b2)xy + a3b2(a − b)y = x3 + ab2(a − b)x2 (a, b ∈ Z, ab(a − b) 6= 0)

with T0 = (0, 0). Then E∗ is given by

Y 2 + (a2 + ab − b2)XY + a3b2(a − b)Y

= X3 + ab2(a − b)X2

+ 5ab(a − b)(a2 − ab + b2)(a3 − 5a2b + 2ab2 + b3)X

+ ab(a − b)(a9 − 18a8b + 76a7b2 − 182a6b3 + 211a5b4

− 132a4b5 + 70a3b6 − 37a2b7 + 9ab8 + b9),

which has ∆∗ = −ab(a − b)(a3 + 5a2b − 8ab2 + b3)7, with

I(x) = x7 + 2ab(a − b)(a + b)x6

− ab(a − b)(a5 − 7a4b + 5a3b2 − 3a2b3 + 2ab4 + b5)x5

+ a3b3(a − b)2(a4 + 13a3b − 12a2b2 + 9ab3 − 6b4)x4

+ a4b4(a − b)3(a5 + 7a4b + 8a3b2 − 4a2b3 − ab4 − b5)x3

+ a7b6(a − b)4(a + b)(3a2 + 5ab − 3b2)x2

+ a9b8(a − b)5(3a2 + 3ab − b2)x + a12b10(a − b)6,

J(x) = x2(x + ab2(a − b))2(x + a2b(a − b))2.
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Consequently we have

F (X) = 4X3 + (a4 + 2a3b + 3a2b2 − 6ab3 + b4)X2

+ 2ab(a − b)(10a5 − 59a4b + 81a3b2 − 61a2b3 + 10ab4 + 10b5)X

+ ab(a − b)(4a9 − 72a8b + 304a7b2 − 727a6b3 + 843a5b4

− 528a4b5 + 280a3b6 − 148a2b7 + 36ab8 + 4b9).
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