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1 Introduction

We study the distribution of rational points on certain K3 surfaces defined over an

algebraic number field k of finite degree, namely the Kummer surfaces S/k attached to

abelian surfaces A/k which are k-isogenous to E × E, the product of an elliptic curve

with itself. (We will also make some minor simplifying assumptions, such as A[2] ⊂ A(k),

and if E has CM, then k contains the CM field.) These are precisely the abelian surfaces

which contain infinitely many abelian subvarieties of dimension one. The image of these

abelian subvarieties of A in the Kummer surface S gives infinitely many rational curves

on S.

Our main results (see Theorems 3.2 and 3.6 for details) describe the height counting

function for the rational points on S which lie on the rational curves just described. Our

results are compatible with one of the conjectures of Batyrev and Manin, but do not

provide a proof of the conjecture because S(k) may contain points not lying on these

rational curves.

1.1 Distribution of rational points on a variety

Let k be an algebraic number field of finite degree and V/k a nonsingular projective

variety. It is one of the most important problems in number theory to study the set V (k)

of k-rational points on V .
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One can study the structure of V (k), especially the distribution of k-rational points

on V , by using height functions in the following way:

Let hD : V (k̄) → R be an absolute logarithmic height function associated with an

ample k-rational divisor D on V . We define the counting function N (V (k), hD;T ) for

T ∈ R+ by

N (V (k), hD;T ) = ♯{P ∈ V (k) ; hD(P ) ≤ T}.

For varieties V of certain type, one can obtain very important information on V (k) by

investigating the asymptotic behavior of N (V (k), hD;T ) as T → ∞. We quote two

classical results.

Example 1.1 (Schanuel [Sc]) For the (n− 1)-dimensional projective space Pn−1, we

have the following asymptotic formula:

N (Pn−1(k), hPn−1 ;T ) = cendT +

 O(TeT ) if n = 2, d = 1,

O(e(nd−1)T ) otherwise,
as T → ∞,

where hPn−1 : Pn−1(k̄) → R denotes the standard absolute logarithmic height function on

Pn−1, which is a height function associated with a hyperplane H, d denotes the degree of

k, and c is a positive number which can be expressed in terms of the class number of k,

special values of the Dedekind zeta function of k, etc.

Example 1.2 (Néron [N]) For an abelian variety A/k, we have the following asymp-

totic formula:

N (A(k), hD;T ) = cT r/2 +O(T (r−1)/2) as T → ∞,

where r denotes the rank of the Mordell-Weil group A(k) and c is a positive number which

depends on the algebraic equivalence class of D. This is a consequence of the Mordell-Weil

Theorem and the theory of the canonical height functions.

Remark 1.3 We can show a similar formula to Example 1.2 for a variety which has

an abelian variety as an unramified covering, say a hyperelliptic surface (see [MS]).

We note that these formulas have the form “main term + error term”, and that the

growth order and the leading coefficient c of the main term are closely related to geometric

invariants of V and arithmetic invariants of k.
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In view of these results, an optimist might have a dream that, for any variety V ,

investigating the asymptotic behavior of the counting function N (V (k), hD;T ) as T → ∞

presents something which is related to geometric invariants of V and arithmetic invariants

of k.

However, after a short study on some other varieties, we have to realize that the dream

is just a dream. For example, let A/k be an abelian surface and V → A the blow-up

of a k-rational point on A. For such a variety V , we cannot expect that investigating

the asymptotic behavior of N (V (k), hD;T ) would work for studying the geometry of

V . Indeed, Example 1.1 combined with Example 1.2 tells us that the counting function

presents the information only on the exceptional curve. In other words, the exceptional

curve has too many rational points than its complement does. We cannot view the whole

shape of V through the counting function without removing the exceptional curve.

It sometimes happens that rational points on a variety concentrate on closed subva-

rieties of lower dimension. Accordingly, studying the distribution of rational points on

a variety V/k, we have to investigate the asymptotic behavior of the counting function

N (U(k), hD;T ) for a suitable non-empty Zariski open subset U/k of V .

1.2 A conjecture of Batyrev and Manin

Recently, Batyrev and Manin [BM] introduced geometric and arithmetic invariants for

ample divisors on a variety, and described a conjecture about their relation (cf. also, [Mo]

and [S3]).

Let k be an algebraic number field of finite degree and V/k a nonsingular projective

variety. Let NS(V ) denote the Néron-Severi group of V , and let N1
eff(V ) be the closed

cone in NS(V )⊗Z R generated by effective divisors on V .

For an ample k-rational divisor D on V , we define a geometric invariant α(D) ∈ R of

D by

α(D) = inf{γ ∈ R ; D ⊗ γ +KV ⊗ 1 ∈ N1
eff(V )},

where KV is a canonical divisor on V . For an ample k-rational divisor D on V and a non-

empty Zariski open subset U/k of V , we define an arithmetic invariant βU(D) ∈ R∪{−∞}

3



of D and U by

βU(D) =
1

[k : Q]
inf

{
s ∈ R ;

∑
P∈U(k)

HD(P )
−s <∞

}
,

where HD : V (k̄) → R+ is an absolute exponential height function associated with D.

Since the height function HD is defined up to multiplying by bounded functions, βU(D)

does not depend on the choice of HD. It is easy to see that α(D) and βU(D) depend only

on the algebraic equivalence class of D, and that

α(mD) =
1

m
α(D) and βU(mD) =

1

m
βU(D)

for m ∈ Z+.

Remark 1.4 (i) It is known that the signature of α(D) and βU(D) are independent

of the choice of D.

(ii) One easily observes that either βU(D) = −∞ or βU(D) ≥ 0. The former case

holds if and only if U(k) is a finite set. In the latter case, βU(D) can be expressed with

the counting function as follows:

βU(D) =
1

[k : Q]
inf{δ ∈ R+ ; N (U(k), hD;T ) ≪ eδT as T → ∞}.

Conjecture 1.5 (Batyrev-Manin [BM]) For any ε > 0, there is a non-empty Zariski

open subset U/k of V such that

βU(D) ≤ α(D) + ε.

We have α(H) = βPn−1(H) = n in Example 1.1, and α(D) = βA(D) = 0 in Example

1.2. Thus the conjecture holds for these varieties. We note that, in the case α(D) ≤ 0,

the conjecture for a field k immediately implies the conjecture for any subfield of k.

Example 1.6 If V = C is a curve of genus g, we easily see

α(D) =
2− 2g

degD

for an ample divisor D on C. Thus we have:

(i) α(D) > 0 if g = 0.
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(ii) α(D) = 0 if g = 1.

(iii) α(D) < 0 if g ≥ 2.

Note that the conjecture for the case g ≥ 2 is nothing but the Mordell-Faltings Theo-

rem.

Example 1.7 (Morita [Mo]) If V = S is a surface, then the Kodaira dimension κ(S)

and the geometric invariant α(D) satisfy the following:

(i) α(D) > 0 if κ(S) = −∞.

(ii) α(D) = 0 if κ(S) = 0 or 1.

(iii) α(D) < 0 if κ(S) = 2.

Let S/k be a nonsingular projective surface without (−1)-curves and of Kodaira di-

mension zero. For such a surface S, Conjecture 1.5 asserts: For any ε > 0, there exists a

non-empty Zariski open subset U/k of S such that βU(D) ≤ ε.

In cases where S is an abelian surface or a hyperelliptic surface, we have βS(D) = 0

(see Example 1.2 and Remark 1.3). Moreover, it is known that the conjecture for Enriques

surfaces can be reduced to the conjecture for K3 surfaces (cf. [Mo]).

If there exists a rational curve (i.e., a curve of genus zero with a rational point) L/k

lying on S, one easily observes that there exists a positive constant δ such that

N (L(k), hD;T ) ≫ eδT as T → ∞

(cf. Proposition 3.4). Therefore, if there exist infinitely many rational curves L/k lying

on S and if the conjecture for S holds, we must take the subvariety U again and again

infinitely many times as ε tends to zero. Thus, we have to estimate the distribution of

rational points on such rational curves in order to show the conjecture for S.

In the past several years, rational points on certain classes of K3 surfaces have been

studied in a number of papers. In 1991, Silverman [S2] constructed the canonical height

functions with respect to certain automorphisms of a K3 surface and applied them to

study the distribution of rational points (see also [CS1]). This work has been generalized

and studied precisely in [Ba], [Bi], [CS2] and in [W]. Some of these papers showed

that their results are compatible with Conjecture 1.5, but did not provide the proof of
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the conjecture. It seems that studying rational points on K3 surfaces is still difficult.

However, for the class of K3 surfaces called Kummer surfaces, one can say a bit by

applying the theory of abelian varieties (cf., e.g., [S1, Example 4.4]).

Acknowledgements The author would like to express his thanks to Professor

Yasuo Morita for wonderful suggestions.

2 Notation and definitions

Let k be an algebraic number field of finite degree, A/k an abelian surface, and let S

be the Kummer surface of A. Then we have the following commutative diagram:

Â

A S
?

ρ
Z
Z

Z
Z
Z~

π

-ϖ ,

where ρ : Â → A denotes the blow-up of the sixteen points A[2] of order two on A and

π : Â→ S the natural projection. Let Ã denote the open subvariety A−A[2]/k of A, on

which the rational map ϖ is regular. For each Q ∈ A[2], we have a (−1)-curve ρ−1(Q)/k̄

lying on Â, which provides a rational curve (defined over k̄) lying on S. We denote by LQ

the rational curve and by S̃ the open subvariety S −
∪

Q∈A[2] LQ/k of S. Then we have

ϖ−1(S̃(k)) = A⟨k⟩ ∩ Ã(k̄),

where A⟨k⟩ denotes the set of points P on A that {P,−P} is stable under the action of

Gal(k̄/k):

A⟨k⟩ = {P ∈ A(k̄) ; {P,−P} is Gal(k̄/k)-stable}.

Remark 2.1 (i) For P ∈ A⟨k⟩, one of the following holds:

(a) P is defined over k.

(b) P is defined over a quadratic extension K/k and satisfies P σ(K) = −P .

Here σ(K) denotes the generator of Gal(K/k). Thus we have

A⟨k⟩ = A(k) ∪
∪

[K:k]=2

{P ∈ A(K) ; P σ(K) = −P}.
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(ii) Each set {P ∈ A(K) ; P σ(K) = −P} can be identified with the set of k-rational

points on the twist of A with respect to the 1-cocycle

Gal(k̄/k) −→ Aut(A), σ 7−→

 1 if σ|K = 1,

[−1] if σ|K = σ(K).

We note that the sets A(k) and {P ∈ A(K) ; P σ(K) = −P} are almost disjoint. More

precisely, we have

A(k) ∩ {P ∈ A(K) ; P σ(K) = −P} ⊂ A[2]

and

{P ∈ A(K) ; P σ(K) = −P} ∩ {P ∈ A(K ′) ; P σ(K′) = −P} ⊂ A[2]

for distinct quadratic extensions K and K ′ of k.

(iii) We can describe the distribution of k-rational points on A and on each twist of A.

However, that does not help us to study the set A⟨k⟩, for k has infinitely many quadratic

extensions.

Suppose that there exists an elliptic curve (i.e., a one-dimensional abelian subvariety)

C/k̄ lying on A. Then, for each Q ∈ A[2], the curve τQ(C)/k̄ lying on A is stable under

[−1] ∈ Aut(A), and hence it provides a rational curve (defined over k̄) lying on S. Here

τQ denotes the translation-by-Q map on A. We denote by LQ,C the rational curve.

Let C denote the set of all elliptic curves (defined over k̄) on A, and L the set of

rational curves on S obtained as described above. For each L ∈ L, we denote the open

subvariety L ∩ S̃ of L by L̃. Note that the surjection

A[2]× C −→ L, (Q,C) 7−→ LQ,C

gives four-to-one correspondence between A[2] × C and L. More precisely, one easily

shows:

Lemma 2.2 For (Q,C), (Q′, C ′) ∈ A[2]× C, the following conditions are equivalent:

(a) LQ,C = LQ′,C′.

(b) C = C ′ and Q ≡ Q′ (mod C[2]).
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For a projective variety V/k, a “height” function h : V (k̄) → R and a subset V ⊂ V (k̄),

we define two counting functions N (V , h;T ) and N+(V, h;T ) of T ∈ R+ by

N (V , h;T ) = ♯{P ∈ V ; h(P ) ≤ T},

N+(V , h;T ) = ♯{P ∈ V ; 0 < h(P ) ≤ T}.

3 Main results

The purpose of this paper is to study the distribution of rational points on rational

curves L ∈ L in the case where the set L consists of infinitely many rational curves. This

condition, ♯L = ∞, is equivalent to the following (see Proposition 4.1):

(C0) The endomorphism algebra End(A)⊗ZQ is isomorphic to M2(F ) over a field F .

We note that the field F in (C0) is isomorphic to the field Q of rational numbers or an

imaginary quadratic field.

Until the end of this section, we assume the condition (C0). Then there exists an

elliptic curve E/k̄ satisfying the following two conditions (see Remark 4.2):

(i) A is isogenous to E × E (over k̄).

(ii) End(E) is isomorphic to the maximal order R of F .

We fix such an elliptic curve E and an isogeny ϕ : A→ E ×E. Then the map C 7→ ϕ(C)

gives one-to-one correspondence between C and the set of all elliptic curves lying on E×E,

and its inverse is given by E ′ 7→ ϕ̂(E ′), where ϕ̂ : E ×E → A denotes the dual isogeny of

ϕ.

We shall partially order the elliptic curves lying on E×E (or the elliptic curves lying on

A) according to their degrees, and study the asymptotic behavior of the number of elliptic

curves C ∈ C of bounded degrees (cf. [K, Corollary 1.3]). We fix {O}×E+E×{O} as an

ample divisor on E×E and define the degree of E ′ (with respect to {O}×E +E ×{O})

by

degE ′ = E ′.({O} × E + E × {O})

for elliptic curves E ′ lying on E × E. Then we obtain the following asymptotic formula

which will be shown in Section 4.2:
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Proposition 3.1 We have

♯{C ∈ C ; deg ϕ(C) ≤ T} ≪ T [F :Q] as T → ∞.

For simplicity, we assume that the field k is sufficiently large so that the following

conditions are satisfied:

(C1) Every two-torsion point on A is k-rational.

(C2) The elliptic curve E is defined over k.

(C3) Any element of End(E) is defined over k.

(C4) The isogeny ϕ : A→ E × E is defined over k.

Then each L ∈ L is defined over k (see Proposition 4.9, (iii)). Moreover, the rational

curves L ∈ L are almost disjoint. More precisely, we have

ϖ−1(L̃(k) ∩ L̃′(k)) ⊂ A⟨k⟩ ∩ A(k̄)tor

if L ̸= L′ (see Remark 4.11). Note that the set A⟨k⟩ ∩ A(k̄)tor is finite (cf. Remark 2.1).

Let D be an ample k-rational divisor on S, and let hD : S(k̄) → R (resp. HD :

S(k̄) → R+) be an absolute logarithmic (resp. exponential) height function associated

with D. To state the main results, we need three positive constants m0, c0, c
′
0. We will

give their definitions later (see Lemma 4.7 and Lemma 5.1, (i)), and just mention their

dependencies for the present. The constant m0 is an analogue of the class number of F

and depends only on F , while the constants c0 and c′0 are used to compare two different

height functions on Ã and depend on the choice of E, ϕ and D.

The following theorem, which will be shown in Section 5.2, shows that the distribution

of rational points on
∪

L∈L L is compatible with Conjecture 1.5:

Theorem 3.2 For each M > 0, we define a finite subset LM ⊂ L by

LM = {LQ,C ; Q ∈ A[2], C ∈ C, deg ϕ(C) ≤M}.

Then

N ((L − LM)[k], hD;T ) ≪ T [F :Q] exp
(4[k : Q]m0c0

M
T
)

uniformly in M as T → ∞,
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where

(L − LM)[k] =
∪

L∈L−LM

L̃(k).

Corollary 3.3 The Dirichlet series∑
P∈(L−LM )[k]

HD(P )
−s

converges for s > 4[k : Q]m0c0/M .

In a similar fashion to the proof of Theorem 3.2, we can prove:

Proposition 3.4 For each (Q,C) ∈ A[2]× C, we have

N (LQ,C(k), hD;T ) ≫ exp
( 4[k : Q]

m0c′0 deg ϕ(C)
T
)

uniformly in (Q,C) as T → ∞.

Corollary 3.5 The Dirichlet series∑
P∈LQ,C(k)

HD(P )
−s

diverges for 0 < s ≤ 4[k : Q]/(m0c
′
0 deg ϕ(C)).

From Theorem 3.2 and Proposition 3.4, we conclude:

Theorem 3.6 For each M > 0, take N > M sufficiently large so that

{C ∈ C ; M < deg ϕ(C) < N/(m2
0c0c

′
0)} ̸= ∅.

Then

N ((L − LM)[k], hD;T ) ∼ N ((LN − LM)[k], hD;T ) as T → ∞,

where

(LN − LM)[k] =
∪

L∈LN−LM

L̃(k).

From the last theorem, we see that, for any subset L′ ⊂ L, almost all rational points

on
∪

L∈L′ L concentrate on finitely many rational curves L ∈ L′ of lower degree (note that

LN − LM consists of finitely many rational curves).
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Although
∪

L∈L L is a dense subset of S, the set
∪

L∈L L(k) of rational points might

be tiny as compared with S(k). Therefore we have not proved Conjecture 1.5 for S.

However, we have seen that
∪

L∈L L has a large amount of rational points at the same

time. Theorem 3.6 suggests: Whatever non-empty Zariski open subset U/k of S we take,

the counting function N (U(k), hD;T ) will not be able to describe the whole shape of S.

Thus, we cannot expect an asymptotic formula for S as in Examples 1.1 or 1.2. It seems

that these results present an evidence of difficulty inherent in the study of the distribution

of rational points on a K3 surface.

4 Elliptic curves lying on abelian surfaces

In this section, we study the set C in a different way from [K] and give the proof of

Proposition 3.1. Until the end of Section 4.2, all varieties and morphisms are assumed to

be defined over k̄.

4.1 Elliptic curves lying on A

First, we show that the condition (C0) in Section 3 can be rephrased in terms of the

endomorphism algebra of A as follows:

Proposition 4.1 The set C consists of infinitely many elliptic curves if and only if

the endomorphism algebra End(A)⊗Z Q is isomorphic to the total matrix algebra M2(F )

over a field F .

Proof For an abelian surface A, one (and the only one) of the following holds (cf.,

e.g., [Mi, Proposition 12.1]):

(a) A is simple.

(b) A is isogenous to E1 × E2 for non-isogenous two elliptic curves E1 and E2.

(c) A is isogenous to E × E for an elliptic curve E.

Moreover, each of these conditions implies the following, respectively:

(a)* End(A)⊗Z Q is a skew field.

(b)* End(A)⊗Z Q is isomorphic to (End(E1)⊗Z Q)⊕ (End(E2)⊗Z Q).
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(c)* End(A)⊗Z Q is isomorphic to M2(End(E)⊗Z Q).

In case (a) or (b), one easily shows that the set C consists of finitely many elliptic curves:

♯C =

 0 in case (a),

2 in case (b).

In case (c), the set C consists of infinitely many elliptic curves as we will observe below.

�

Remark 4.2 In case (c) in the proof above, we can take the elliptic curve E so that

End(E) is isomorphic to the maximal order of F .

In the rest of this section, we assume the condition (C0), and we fix an elliptic curve

E satisfying the following two conditions:

(i) A is isogenous to E × E.

(ii) End(E) is isomorphic to the maximal order R of F .

Moreover, we fix an isogeny ϕ : A→ E × E.

4.2 Elliptic curves lying on E × E

Let p (resp. q) denote the first (resp. the second) projection from E × E to E, and

we fix a ring isomorphism

[ · ] : R −→ End(E), α 7−→ [α].

Then each (α, β) ∈ R2 − {(0, 0)} induces a morphism

E −→ E × E, P 7−→ ([α]P, [β]P ),

which gives an isogeny ψα,β from E to an elliptic curve Eα,β lying on E × E.

Remark 4.3 If F is an imaginary quadratic field (i.e., E has complex multiplication),

then Kerψα,β is isomorphic to m−1
α,β/R and hence degψα,β = Nmα,β holds. Here, mα,β

denotes the (integral) ideal in F generated by α and β, and Nmα,β its norm.
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Lemma 4.4 For (α, β), (α′, β′) ∈ R2 − {(0, 0)}, we have:

(i) Eα,β = Eα′,β′ if αβ′ = α′β.

(ii) Eα,β ∩ Eα′,β′ ⊂ (E × E)tor, therefore Eα,β ̸= Eα′,β′ if αβ′ ̸= α′β.

Proof (i) Clear.

(ii) Suppose that

([α]P, [β]P ) = ([α′]P ′, [β′]P ′)

for some P, P ′ ∈ E(k̄). Then

[αβ′ − α′β]P = [αβ′ − α′β]P ′ = O,

which implies P, P ′ ∈ Etor. �

The proof of Proposition 4.1 is completed by the following proposition and corollary:

Proposition 4.5 The map (α, β) 7→ Eα,β induces one-to-one correspondence between

the set P1(F ) of F -rational points on the projective line and the set of all elliptic curves

lying on E × E.

Corollary 4.6 There exists one-to-one correspondence between P1(F ) and C.

Proof of Proposition 4.5 It suffices to show that any elliptic curve lying on

E×E can be expressed as Eα,β for some (α, β) ∈ R2−{(0, 0)}. Let E ′ be such an elliptic

curve. Then p|E′ and q|E′ are morphisms of abelian varieties from E ′ to E. Since either

p|E′ ̸= 0 or q|E′ ̸= 0 holds, E ′ must be isogenous to E. By taking an isogeny λ : E → E ′,

we have E ′ = Eα,β for [α] = p|E′ ◦ λ, [β] = q|E′ ◦ λ ∈ End(E). �

Before giving the proof of Proposition 3.1, we show the following lemma:

Lemma 4.7 There exists a positive constant m0 for which the following holds: Any

element of P1(F ) can be represented by some (α, β) ∈ R2 − {(0, 0)} satisfying degψα,β ≤

m0.

Remark 4.8 If F is of class number one, the lemma above clearly holds for m0 = 1.
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Proof of Lemma 4.7 It suffices to show the lemma in the case where F is an

imaginary quadratic field of class number greater than one. Let m(1), . . . ,m(h) be integral

ideals in F so that any ideal class of F is represented by one of these, and we fix a nonzero

integer µ ∈
∩h

i=1 m
(i).

For any (α′, β′) ∈ F 2 − {(0, 0)}, there exists γ ∈ F× such that m−1
α′,β′ = γm(i) for some

i. By putting α = γµα′ and β = γµβ′, we have (α, β) ∈ R2 − {(0, 0)}, αβ′ = α′β and

Nmα,β = N(γµmα′,β′) =
|NF/Q(µ)|
Nm(i)

.

Hence the inequality holds for m0 = |NF/Q(µ)| (cf. Remark 4.3). �

Proof of Proposition 3.1 For any (α, β) ∈ R2−{(0, 0)}, the degree (with respect

to {O} × E + E × {O} = E0,1 + E1,0) of Eα,β can be expressed as

degEα,β =
deg[α] + deg[β]

degψα,β

.

Hence it follows from Proposition 4.5 and Lemma 4.7 that

♯{C ∈ C ; deg ϕ(C) ≤ T} ≤ ♯{(α, β) ∈ R2 ; deg[α] + deg[β] ≤ m0T}.

On the other hand, one easily shows that

♯{(α, β) ∈ R2 ; deg[α] + deg[β] ≤ m0T} ≍ T [F :Q] as T → ∞.

Hence we obtain the desired asymptotic formula. �

4.3 Some remarks on k-rationality

Now we assume the conditions (C1)–(C4) of Section 3. These conditions imply:

Proposition 4.9 (i) For any (α, β) ∈ R2 − {(0, 0)}, the elliptic curve Eα,β, the

isogeny ψα,β : E → Eα,β and its dual isogeny ψ̂α,β : Eα,β → E are defined over k.

Therefore any elliptic curve lying on E × E is defined over k.

(ii) The dual isogeny ϕ̂ : E × E → A of ϕ is defined over k. Therefore any C ∈ C is

defined over k.

(iii) For any (Q,C) ∈ A[2] × C, the rational curve LQ,C is defined over k. Therefore

any L ∈ L is defined over k.
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Since the elliptic curve E is defined over k, we can define E⟨k⟩ in the same fashion as

A⟨k⟩. We can also define Eα,β⟨k⟩ and C⟨k⟩ because of the proposition above.

Corollary 4.10 (i) For any (α, β) ∈ R2 − {(0, 0)}, we have

ψα,β(E⟨k⟩) ⊂ Eα,β⟨k⟩, ψ̂α,β(Eα,β⟨k⟩) ⊂ E⟨k⟩.

(ii) For any C ∈ C, we have

ϕ(C⟨k⟩) ⊂ ϕ(C)⟨k⟩, ϕ̂(ϕ(C)⟨k⟩) ⊂ C⟨k⟩.

(iii) For any (Q,C) ∈ A[2]× C, we have

ϖ−1(L̃Q,C(k)) = τQ(C⟨k⟩) ∩ Ã(k̄).

Remark 4.11 We recall that the rational curves L ∈ L are almost disjoint. More

precisely, we have

ϖ−1(L̃Q,C(k) ∩ L̃Q′,C′(k)) ⊂ τQ(C⟨k⟩) ∩ τQ′(C ′⟨k⟩) ⊂ A⟨k⟩ ∩ A(k̄)tor

if LQ,C ̸= LQ′,C′ (cf. Lemma 2.2 and Lemma 4.4, (ii)).

5 Number of rational points of bounded heights

In this section, we give the proof of Theorem 3.2. Notation and assumptions are the

same as in Section 3.

5.1 Reduction of the problem

Let d0 denote the degree of the isogeny ϕ : A → E × E. For convenience, we fix the

canonical absolute logarithmic height functions on E, E × E and on A as follows:

ĥE : E(k̄) → R the height associated with (O),

ĥE×E : (E × E)(k̄) → R the height associated with E0,1 + E1,0,

ĥA : A(k̄) → R the height associated with ϕ̂(E0,1) + ϕ̂(E1,0).

We recall that (O), E0,1 + E1,0 and ϕ̂(E0,1) + ϕ̂(E1,0) are ample (and even) k-rational

divisors on E, E × E and on A, respectively.
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Lemma 5.1 (i) There exist positive constants c0, c1, c
′
0, c

′
1 such that

d0ĥA ≤ c0hD ◦ϖ + c1 on Ã(k̄)

and

d0hD ◦ϖ ≤ c′0ĥA + c′1 on Ã(k̄).

(ii) We have

d0ĥA = ĥE×E ◦ ϕ on A(k̄).

(iii) For each (α, β) ∈ R2 − {(0, 0)}, we have

ĥE×E =
degEα,β

degψα,β

ĥE ◦ ψ̂α,β on Eα,β(k̄).

Proof (i) Since the natural projection π : Â → S is finite and surjective, the pull-

back π∗D is an ample divisor on Â. Let hπ∗D : Â(k̄) → R be an absolute logarithmic

height function associated with π∗D. Then

hπ∗D = hD ◦ π +O(1) on Â(k̄)

(see, e.g., [L, Chapter 4, Theorem 5.1]). On the one hand, there exist positive constants

c0 and c′0 such that

d0ĥA ◦ ρ ≤ c0hπ∗D +O(1) on
(
Â−

∪
Q∈A[2]

ρ−1(Q)
)
(k̄)

and

d0hπ∗D ≤ c′0ĥA ◦ ρ+O(1) on
(
Â−

∪
Q∈A[2]

ρ−1(Q)
)
(k̄)

(see, e.g., [L, Chapter 4, Propositions 1.7 and 5.4]). Hence we obtain the assertion.

(ii) Immediate from

ϕ∗(E0,1 + E1,0) = d0(ϕ̂(E0,1) + ϕ̂(E1,0))

(see, e.g., [L, Chapter 5, Proposition 3.3]).

(iii) Since the pull-back of E0,1 + E1,0 by the morphism

E −→ E × E, P 7−→ ([α]P, [β]P )
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is algebraically equivalent to (deg[α] + deg[β])(O), we have

ĥE×E ◦ ψα,β = (deg[α] + deg[β])ĥE on E(k̄),

which implies the desired equality. �

Lemma 5.2 (i) Let c0 and c1 be the positive constants as in Lemma 5.1. For a subset

C ′ ⊂ C, define a subset L′ ⊂ L by L′ = {LQ,C ; Q ∈ A[2], C ∈ C ′}. Then

N
( ∪
L∈L′

L̃(k), hD;T
)
≤ 2

∑
C∈C′

N+

(
C⟨k⟩, ĥA;

c0T + c1
d0

)
+

1

2
♯(A⟨k⟩ ∩ A(k̄)tor).

(ii) Let m0 be the positive constant as in Lemma 4.7. Then, for each C ∈ C, we have

N+(C⟨k⟩, ĥA;T ) ≤ m0d0N+

(
E⟨k⟩, ĥE;

m0d0
deg ϕ(C)

T
)
.

Proof (i) It follows from Lemma 2.2, Corollary 4.10, (iii) and Lemma 5.1, (i) that

N
( ∪
L∈L′

L̃(k), hD;T
)
≤ 1

2
N
( ∪
C∈C′

∪
Q∈A[2]/C[2]

τQ(C⟨k⟩), ĥA;T ′
)
,

where T ′ = (c0T + c1)/d0. As we mentioned in Remark 4.11, we have

N
( ∪
C∈C′

∪
Q∈A[2]/C[2]

τQ(C⟨k⟩), ĥA;T ′
)

≤ N+

( ∪
C∈C′

∪
Q∈A[2]/C[2]

τQ(C⟨k⟩), ĥA;T ′
)
+ ♯(A⟨k⟩ ∩ A(k̄)tor)

and

N+

( ∪
C∈C′

∪
Q∈A[2]/C[2]

τQ(C⟨k⟩), ĥA;T ′
)
=

∑
C∈C′

∑
Q∈A[2]/C[2]

N+

(
τQ(C⟨k⟩), ĥA;T ′

)
= 4

∑
C∈C′

N+

(
C⟨k⟩, ĥA;T ′

)
(note that ĥA ◦ τQ = ĥA on A(k̄)). Therefore we obtain the desired inequality.

(ii) It follows from Corollary 4.10, (ii) and Lemma 5.1, (ii) that

N+(C⟨k⟩, ĥA;T ) ≤ d0N+(ϕ(C)⟨k⟩, ĥE×E; d0T ).

By Proposition 4.5 and Lemma 4.7, we can take (α, β) ∈ R2−{(0, 0)} so that ϕ(C) = Eα,β

and degψα,β ≤ m0. Then it follows from Corollary 4.10, (i) and Lemma 5.1, (iii) that

N+(Eα,β⟨k⟩, ĥE×E; d0T ) ≤ m0 N+

(
E⟨k⟩, ĥE;

m0d0
degEα,β

T
)
.

Therefore we obtain the desired inequality. �
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5.2 Distribution of rational points on
∪

L∈L L

Now, we fix a Weierstrass equation for E/k of the form

E : y2 = x3 + ax+ b (a, b ∈ k, 4a3 + 27b2 ̸= 0).

Then E⟨k⟩ = x−1(P1(k)) and

ĥE =
1

2
hP1 ◦ x+O(1) on E(k̄),

where hP1 : P1(k̄) → R denotes the standard absolute logarithmic height function on P1.

On the one hand, it follows from Example 1.1 that

N (P1(k), hP1 ;T ) ≍ exp(2[k : Q]T ) as T → ∞.

These formulas imply:

Lemma 5.3 We have

N (E⟨k⟩, ĥE;T ) ≍ exp(4[k : Q]T ) as T → ∞.

Corollary 5.4 The infimum

h0 = inf{ĥE(P ) ; P ∈ E⟨k⟩, ĥE(P ) > 0}

is positive.

By the corollary above, we obtain:

Corollary 5.5 Let m0 and h0 be the positive constants as in Lemma 4.7 and Corol-

lary 5.4, respectively. Then, for C ∈ C,

N+(C⟨k⟩, ĥA;T ) = 0 if deg ϕ(C) >
m0d0
h0

T.

Proof of Theorem 3.2 It follows from Lemma 5.2 that

N ((L − LM)[k], hD;T )

≤ 2m0d0
∑

C∈C−CM

N+

(
E⟨k⟩, ĥE;

m0

deg ϕ(C)
(c0T + c1)

)
+

1

2
♯(A⟨k⟩ ∩ A(k̄)tor),

where CM = {C ∈ C ; deg ϕ(C) ≤M}. Moreover, it follows from Corollary 5.5 that∑
C∈C−CM

N+

(
E⟨k⟩, ĥE;

m0

deg ϕ(C)
(c0T + c1)

)
≤ ♯

{
C ∈ C ; deg ϕ(C) ≤ m0d0

h0
(c0T + c1)

}
N
(
E⟨k⟩, ĥE;

m0

M
(c0T + c1)

)
.

Hence we obtain the desired asymptotic formula by Proposition 3.1 and Lemma 5.3. �
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