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Abstract

In this paper, we study distribution of rational points on a hyperelliptic surface

defined over an algebraic number field, and show that this distribution is very similar

to the distribution of rational points on an abelian surface. As an application, we

show that a conjecture of Batyrev-Manin holds for such a surface.

1 Introduction

Let k be an algebraic number field of finite degree and V a nonsingular projective

variety defined over k. It is one of the most important problems in number theory to study

the set V (k) of k–rational points on V .

One can study the structure of V (k), especially the distribution of k–rational points

on V , by using height functions in the following way:

Let L be an ample invertible sheaf on the k–variety V and let hL be the (absolute)

logarithmic height function associated to L. Then, for any positive number M ,

{P ∈ V (k) ; hL(P ) ≤ M} is a finite set. We define a function NL(V (k);M) of M

by

NL(V (k);M) = #{P ∈ V (k) ; hL(P ) ≤ M}.

One can obtain very important information on V (k) by investigating the asymptotic be-

havior of NL(V (k);M) as M → ∞.

Let A be an abelian variety defined over k. Then the set A(k) of k–rational points

on A is a finitely generated abelian group (the Mordell-Weil theorem). In 1965, Néron [7]
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obtained the following asymptotic formula by using the canonical height:

NL(A(k);M) = cM r/2 +O(M (r−1)/2) as M → ∞,

where r is the rank of the abelian group A(k) and c is a positive number which depends

only on the algebraic equivalence class of L.
For the n–dimensional projective space Pn, Schanuel [8] obtained the following asymp-

totic formula:

NO(1)(P
n(k);M) = c exp((n+ 1)M) +

 O(M exp(M)) if n = d = 1

O(exp((n+ 1− (1/d))M)) otherwise

as M → ∞, where d = [k : Q] and c is a positive number which can be expressed in terms

of the class number of k, special values of the Dedekind zeta function of k, etc.

The main purpose of this paper is to investigate the set S(k) of k–rational points on

a hyperelliptic surface S defined over k, especially to investigate the asymptotic behavior

of NL(S(k);M) as M → ∞.

Let S be a hyperelliptic surface defined over k. Then S can be expressed as a quotient

space of an abelian variety A by a finite group of automorphisms. We study the set of

k–rational points on S by using this covering structure and by reducing the problem to the

corresponding problem on abelian varieties. Under a minor assumption, we can express the

set S(k) in terms of the abelian variety A and a finite number of twists of A (cf. Theorem

3.9 and Remark 3.11). Then, by applying the theory of height functions, we obtain the

following theorem, which implies that the distribution of rational points on a hyperelliptic

surface is very similar to the distribution of rational points on an abelian variety.

Theorem A Let k be an algebraic number field of finite degree and let S be a hyper-

elliptic surface defined over k. Then there exists a finite extension k′ of k satisfying the

following property :

Let K be any finite extension of k′. Then, for any ample invertible sheaf L on S/K,

we have

NL(S(K);M) = cM r/2 +O(M (r−1)/2) as M → ∞,

where r is a non-negative integer which depends on K but not on L, while c is a positive

number which depends on K and the algebraic equivalence class of L.

We say that the ground field k is sufficiently large if k′ and k coincide. We give in

§3 a sufficient condition for k to be sufficiently large. If k is sufficiently large, the above

theorem can be simplified:
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Theorem A′ Let k and S be as above. Suppose that k is sufficiently large. Then,

for any ample invertible sheaf L on the k–variety S, the above asymptotic formula for

NL(S(k);M) holds.

Throughout this paper, all varieties, morphisms, sheaves, etc. are assumed to be

defined over the algebraic closure Q̄ of Q, and we use the following notation:

If A is an abelian variety, we denote by O the unit element, and by Aut(A) (resp.

Aut(A,O)) the automorphism group of A as an algebraic variety (resp. as a group variety).

If A is defined over a field k, we denote by Autk(A) (resp. Autk(A,O)) the group consisting

of all elements of Aut(A) (resp. Aut(A,O)) which are defined over k.

For any abelian group A, we denote by Ator the torsion subgroup of A. If A is finitely

generated, we denote by Afree and AR the quotient group A/Ator and the R–vector space

A⊗Z R, respectively.

If G is a group, and if g, g′ are elements of G, we denote by ⟨g⟩ (resp. ⟨g, g′⟩) the

subgroup of G generated by g (resp. g and g′).

2 Hyperelliptic Surfaces

Let S be a nonsingular projective algebraic surface defined over Q̄ without exceptional

curves of the first kind. S is called a hyperelliptic surface if the Kodaira dimension κ(S)

of S is 0 and the second Betti number B2 of S is 2 (cf. [2]).

Any hyperelliptic surface can be expressed as a quotient space of an abelian variety

by a finite group of automorphisms. This fact is due to [3], and we quote the following

more explicit result from [2].

Theorem 2.1 For any hyperelliptic surface S, there exist elliptic curves E1, E2 and

a finite subgroup G of Aut(E1) × Aut(E2) such that S ∼= (E1 × E2)/G. Further, these

elliptic curves E1, E2 and the subgroup G of Aut(E1)×Aut(E2) satisfy one of the following

conditions :

(2a) E1, E2 arbitrary, G = ⟨g⟩,
g : (P1, P2) 7−→ (P1 + T1,−P2), T1 ∈ E1(Q̄), order T1 = 2;

(2b) E1, E2 arbitrary, G = ⟨g, g′⟩,
g : (P1, P2) 7−→ (P1 + T1,−P2), g′ : (P1, P2) 7−→ (P1 + T ′

1, P2 + T ′
2),

T1, T
′
1 ∈ E1(Q̄), order T1 = order T ′

1 = 2, ⟨T1⟩ ∩ ⟨T ′
1⟩ = {O},

T ′
2 ∈ E2(Q̄), order T ′

2 = 2;

(3a) E1 arbitrary, j(E2) = 0, G = ⟨g⟩,
g : (P1, P2) 7−→ (P1 + T1, ρ

2P2), T1 ∈ E1(Q̄), order T1 = 3;
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(3b) E1 arbitrary, j(E2) = 0, G = ⟨g, g′⟩,
g : (P1, P2) 7−→ (P1 + T1, ρ

2P2), g′ : (P1, P2) 7−→ (P1 + T ′
1, P2 + T ′

2),

T1, T
′
1 ∈ E1(Q̄), order T1 = order T ′

1 = 3, ⟨T1⟩ ∩ ⟨T ′
1⟩ = {O},

T ′
2 ∈ E2(Q̄), order T ′

2 = 3, ρ2T ′
2 = T ′

2;

(4a) E1 arbitrary, j(E2) = 1728, G = ⟨g⟩,
g : (P1, P2) 7−→ (P1 + T1, iP2), T1 ∈ E1(Q̄), order T1 = 4;

(4b) E1 arbitrary, j(E2) = 1728, G = ⟨g, g′⟩,
g : (P1, P2) 7−→ (P1 + T1, iP2), g′ : (P1, P2) 7−→ (P1 + T ′

1, P2 + T ′
2),

T1, T
′
1 ∈ E1(Q̄), order T1 = 4, order T ′

1 = 2, ⟨T1⟩ ∩ ⟨T ′
1⟩ = {O},

T ′
2 ∈ E2(Q̄), order T ′

2 = 2, iT ′
2 = T ′

2;

(6a) E1 arbitrary, j(E2) = 0, G = ⟨g⟩,
g : (P1, P2) 7−→ (P1 + T1, ρP2), T1 ∈ E1(Q̄), order T1 = 6.

Here, j(E2) denotes the j–invariant of the elliptic curve E2, while ρ (resp. i ) denotes an

element of Aut(E2, O) of order 6 (resp. of order 4).

Let A = E1 ×E2 be the product variety, and let π : A → S be the natural morphism.

Then A is a 2–dimensional abelian variety, π is an étale morphism, and π induces an

isomorphism of A/G onto S.

Remark 2.2 (i) The natural projection G → Aut(El) (l = 1, 2) is a homomorphism

of groups. We denote by Gl the image of this map.

(ii) Let O = (O1, O2) be the unit element of the abelian variety A and let pr1 : A → E1

be the projection. Then the image of the G–orbit OG under pr1 coincides with the G1–orbit

OG1
1 . We denote this orbit by Γ :

Γ = pr1(O
G) = OG1

1 .

Then Γ is a finite subgroup of E1(Q̄), which is generated by one element T1, or two elements

T1 and T ′
1.

(iii) The group G1 acts on the elliptic curve E1 as translations by elements of Γ. More

precisely, for P = (P1, P2) ∈ A(Q̄) and f = (f1, f2) ∈ G, we have

pr1(f(P )) = f1(P1) = P1 + f1(O1) = P1 + pr1(f(O)),

and hence

pr1(P
G) = PG1

1 = P1 + Γ.

(iv) The map

G −→ Γ, f 7−→ pr1(f(O))

is an isomorphism of groups.

4



Since Γ is a finite subgroup of E1(Q̄), there exists an isogeny ϕ : E1 → E of elliptic

curves such that Ker ϕ = Γ. These E and ϕ are determined by E1 and Γ uniquely up to

isomorphisms. Since E is isomorphic to the quotient variety E1/G1, we have the following

commutative diagram:

(∗)
A = E1 × E2

pr1−−−−→ E1

π
y ϕ

y
S ∼= A/G

p
−−−−→ E ∼= E1/G1

3 Rational Points on Hyperelliptic Surfaces

Let k be an algebraic number field of finite degree and let S be a hyperelliptic surface

defined over k. Then, by Theorem 2.1, there exist two elliptic curves E1, E2 and a finite

subgroup G of Aut(E1)× Aut(E2) such that S ∼= (E1 × E2)/G over Q̄.

Throughout this section, we assume that this isomorphism is defined over k. More

precisely, we assume :

(C1) E1 and E2 are defined over k;

(C2) E1(k) ̸= ∅ and E2(k) ̸= ∅;
(C3) all elements of G are defined over k;

(C4) the natural morphism π : A → S is defined over k.

As we will show later, any field k which satisfies these conditions (C1)–(C4) can be

used as the field k′ mentioned in Theorem A.

These conditions (C1)–(C4) imply:

(C5) A = E1 × E2 is a 2-dimensional abelian variety defined over k;

(C6) T1, T
′
1 ∈ E1(k) and T ′

2 ∈ E2(k);

(C7) in cases (3a), (3b) and (6a), (1 +
√
−3)/2 ∈ k and ρ ∈ Autk(E2, O);

(C8) in cases (4a) and (4b),
√
−1 ∈ k and i ∈ Autk(E2, O).

It follows from (C3) that, for every f ∈ G, (f(P ))σ = f(P σ) holds for any P ∈ A(Q̄)

and σ ∈ Gal(Q̄/k). Further it follows from (C4) that (π(P ))σ = π(P σ) holds for any

P ∈ A(Q̄) and σ ∈ Gal(Q̄/k). Therefore, for any P ∈ A(Q̄), π(P ) is a k–rational point on

S if and only if the G–orbit of P is defined over k (i.e., the set PG is invariant under the

action of Gal(Q̄/k)). In particular, π(A(k)) ⊂ S(k).

In the rest of this section, we study the set π−1(S(k)).

By (C6), Γ is a finite subgroup of E1(k). Hence we may assume that the elliptic curve

E and the isogeny ϕ : E1 → E are defined over k. We note that the k–isomorphism classes
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of E and ϕ are determined uniquely. Hence all varieties and morphisms in the diagram (∗)
are defined over k.

Since ϕ is defined over k, ϕ(E1(k)) ⊂ E(k). Since E1 and E are k–isogenous, we

obtain

rank E1(k) = rank ϕ(E1(k)) = rank E(k) = rank ϕ−1(E(k)).

Consequently, both of the groups ϕ−1(E(k))/E1(k) and E(k)/ϕ(E1(k)) are finite, and ϕ

induces an isomorphism between these two groups.

Lemma 3.1 If P = (P1, P2) ∈ A(Q̄) satisfies π(P ) ∈ S(k), then P1 ∈ ϕ−1(E(k)).

Proof This lemma follows easily from the k–rationality and the commutativity of the

diagram (∗). q.e.d.

In view of this lemma, we first study elements of the group ϕ−1(E(k)).

For any P = (P1, P2) ∈ π−1(S(k)), let k(P ) (resp. k(P1)) be the field generated

over k by the coordinates of P (resp. P1). We see later that k(P ) and k(P1) coincide.

(In other words, we see later that P2 ∈ E2(Q̄) is defined over k(P1).) Hence we study

k(Q) (Q ∈ ϕ−1(E(k))).

Lemma 3.2 (i) For any Q ∈ ϕ−1(E(k)), k(Q) is a finite Galois extension of k, and

the map

Gal(k(Q)/k) −→ Γ, σ 7−→ Qσ −Q

is an injective homomorphism. In particular, k(Q) is an abelian extension of k.

(ii) If Q,Q′ ∈ ϕ−1(E(k)) satisfy Q ≡ Q′ (mod. E1(k)), then k(Q) = k(Q′) holds.

Proof (i) Let σ be any element of Gal(Q̄/k). Since ϕ and ϕ(Q) are defined over k,

ϕ(Q) = (ϕ(Q))σ = ϕ(Qσ). Hence Qσ −Q is contained in Ker ϕ = Γ. It follows that

Qσ ∈ Q+ Γ ⊂ Q+ E1(k).

Hence Qσ is defined over k(Q). Thus k(Q) is a Galois extension of k.

If σ and τ are contained in Gal(k(Q)/k), then we have

Qστ −Q = (Qσ −Q)τ +Qτ −Q = (Qσ −Q) + (Qτ −Q),

because Qσ − Q ∈ Γ ⊂ E1(k). Therefore the map σ 7→ Qσ − Q is a homomorphism of

groups. The injectivity of this map is obvious.

(ii) Clear. q.e.d.
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Remark 3.3 Let v be a finite prime divisor of k such that v is prime to the exponent

of Γ, and that the elliptic curve E1 has a good reduction at v. Then v is unramified in

k(Q)/k (cf., e.g., [10, Chapter VII, Proposition 4.1, (a)]).

Now we study the second elliptic curve E2.

We fix a point Q of E1(Q̄). In view of Lemma 3.1, we may assume Q ∈ ϕ−1(E(k)),

because we are interested in a case such that π((Q,R)) ∈ S(k) for some R ∈ E2(Q̄). We

denote by E2{Q} the set consisting of all such points R :

E2{Q} = {R ∈ E2(Q̄) ; (Q,R) ∈ π−1(S(k))}.

By composing the homomorphisms Gal(k(Q)/k) → Γ → G → Autk(E2) mentioned in

Remark 2.2 and Lemma 3.2, we obtain an injective homomorphism

ξQ : Gal(k(Q)/k) −→ Autk(E2), σ 7−→ ξQσ .

Lemma 3.4 (i) For any Q ∈ ϕ−1(E(k)), we have

E2{Q} = {R ∈ E2(k(Q)) ; Rσ = ξQσ (R) for any σ ∈ Gal(k(Q)/k)}.

(ii) If Q,Q′ ∈ ϕ−1(E(k)) satisfy Q ≡ Q′ (mod. E1(k)), then E2{Q} = E2{Q′} holds.

Proof (i) Let R be any point of E2{Q}. We show that R is defined over k(Q). Let σ

be any element of Gal(Q̄/k(Q)). Since (Q,R) is a point of π−1(S(k)), the point

(Q,R)σ = (Qσ, Rσ) = (Q,Rσ)

belongs to the G–orbit(Q,R)G. Hence there exists an element f ∈ G such that (Q,Rσ) =

f(Q,R). It follows from Remark 2.2, (iii) that Q = Q + pr1(f(O)). Since the map

G ∋ f 7→ pr1(f(O)) ∈ Γ is injective (cf. Remark 2.2, (iv)), we have f = id. Consequently,

we obtain

(Q,R)σ = (Q,R) for any σ ∈ Gal(Q̄/k(Q)),

and hence R is defined over k(Q). Therefore E2{Q} ⊂ E2(k(Q)).

Let R be as above, and let σ be any element of Gal(k(Q)/k). Then there exists a

unique element f of G such that (Q,R)σ = f(Q,R). This f is the element of G which

corresponds to Qσ −Q ∈ Γ under the isomorphism G ∼= Γ. Hence, by the definition of ξQ,

we have Rσ = ξQσ (R) . Therefore

E2{Q} ⊂ {R ∈ E2(k(Q)) ; Rσ = ξQσ (R) for any σ ∈ Gal(k(Q)/k)}.

By reversing the above argument, we obtain

E2{Q} ⊃ {R ∈ E2(k(Q)) ; Rσ = ξQσ (R) for any σ ∈ Gal(k(Q)/k)}.
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(ii) Suppose that Q ≡ Q′ (mod. E1(k)). Then it follows from Lemma 3.2, (ii) that

k(Q) = k(Q′). Hence

Qσ −Q = (Q′)σ −Q′ for any σ ∈ Gal(k(Q)/k) = Gal(k(Q′)/k),

which implies that ξQ = ξQ
′
. Therefore, by (i), the equality E2{Q} = E2{Q′} holds.

q.e.d.

By using Lemma 3.1 and Lemma 3.4, (i), we have

k(P ) = k(P1) for any P = (P1, P2) ∈ π−1(S(k)).

The following corollary shows that we may assume that P ∈ A(Q̄) is defined over a fixed

finite extension of k.

Corollary 3.5 The number of the extensions {k(P ) ; P ∈ π−1(S(k))} of k is finite.

Proof Let P = (P1, P2) be any point of π−1(S(k)). It follows from Lemma 3.1 that

P1 ∈ ϕ−1(E(k)). We also have k(P ) = k(P1). Therefore

{k(P ) ; P ∈ π−1(S(k))} ⊂ {k(Q) ; Q ∈ ϕ−1(E(k))}.

On the one hand, by Lemma 3.2, (ii), we have

{k(Q) ; Q ∈ ϕ−1(E(k))} = {k(Q) ; Q ∈ ϕ−1(E(k))/E1(k)}.

Since ϕ−1(E(k))/E1(k) is a finite set, we obtain the corollary. q.e.d.

Remark 3.6 We note that this corollary can be proved also by using Lemma 3.2,

(i) and Remark 3.3. We can prove it also by using Hermite’s finiteness theorem and the

Chevalley-Weil theorem (cf. [9, pp 49–50]).

Remark 3.7 Since the homomorphism ξQ is a 1-cocycle inH1(Gal(k(Q)/k),Aut(E2)),

we can twist the elliptic curve E2 by this cocycle ξQ. Hence there exists an algebraic curve

C defined over k and an isomorphism θ : C → E2 defined over k(Q) such that

ξQσ = θσ ◦ θ−1 for any σ ∈ Gal(k(Q)/k).

One can easily check that for any R ∈ E2(Q̄), R ∈ E2{Q} if and only if θ−1(R) ∈ C(k).

E2{Q} may be empty. But, if E2{Q} has a point, it coincides with a coset of a

subgroup of E2(k(Q)). Namely, we have the following:
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Lemma 3.8 Let Q be a point of ϕ−1(E(k)). We assume E2{Q} to be nonempty.

Then there exists a unique subgroup C{Q} of E2(k(Q)) such that

E2{Q} = R + C{Q} for any R ∈ E2{Q}.

In particular, if O ∈ E2{Q}, then E2{Q} is a subgroup of E2(k(Q)).

Proof Let C and θ be as in the above remark, and we fix a point R of E2{Q}. Then
θ−1(R) is a k–rational point on C. Since E2 is isomorphic to C over k(Q), the genus of

C is 1. Hence the curve C has a structure of 1–dimensional abelian variety defined over k

with θ−1(R) as its unit element. Hence the map

E2 −→ C, R′ 7−→ θ−1(R′ +R)

is an isomorphism of abelian varieties defined over k(Q). We denote by C{Q} the inverse

image of C(k) under this map. It follows that C{Q} is a subgroup of E2(k(Q)), and that

C{Q} = θ(C(k))− R = E2{Q} − R. Hence E2{Q} = R + C{Q}. It is easy to check that

C{Q} is independent of the choice of R, and that such C{Q} is uniquely determined by

Q. q.e.d.

By using this lemma, we can obtain an explicit expression for the set π−1(S(k)).

Theorem 3.9 Let k be an algebraic number field of finite degree, S a hyperelliptic

surface defined over k, and A, π, etc. as in §2. Suppose that the conditions (C1)–(C4) are

satisfied. Let E2{Q} and C{Q} (Q ∈ ϕ−1(E(k))) be as above. Then π−1(S(k)) is expressed

as a disjoint union of a finite number of cosets (cf. Lemma 3.8):

π−1(S(k)) =
⨿

Q∈ϕ−1(E(k))/E1(k)
E2{Q}̸=∅

(
(Q,R) + E1(k)× C{Q}

)
.

Here R denotes a point of E2{Q}.

Proof Let {Q(1), Q(2), · · · , Q(t)} ⊂ ϕ−1(E(k)) be a complete set of representatives of

ϕ−1(E(k))/E1(k). Suppose that P = (P1, P2) is contained in π−1(S(k)). Then it follows

from Lemma 3.1 that a congruence P1 ≡ Q(l) (mod. E1(k)) holds for some l. Therefore, by

Lemma 3.4, (ii), we have P2 ∈ E2{P1} = E2{Q(l)}. Hence P ∈
(
Q(l) + E1(k)

)
× E2{Q(l)}.

Therefore we obtain

π−1(S(k)) ⊂
∪

Q∈ϕ−1(E(k))/E1(k)
E2{Q}̸=∅

(
Q+ E1(k)

)
× E2{Q}.
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Conversely, if E2{Q(l)} is not empty, then it follows from the definition of E2{Q(l)}
and from Lemma 3.4, (ii) that(

Q(l) + E1(k)
)
× E2{Q(l)} ⊂ π−1(S(k)).

Therefore

π−1(S(k)) =
∪

Q∈ϕ−1(E(k))/E1(k)
E2{Q}̸=∅

(
Q+ E1(k)

)
× E2{Q}.

Since the union ∪
Q∈ϕ−1(E(k))/E1(k)

E2{Q}̸=∅

(
Q+ E1(k)

)

is disjoint, the union ∪
Q∈ϕ−1(E(k))/E1(k)

E2{Q}̸=∅

(
Q+ E1(k)

)
× E2{Q}

is also disjoint. Hence, using Lemma 3.8, we obtain the desired result. q.e.d.

Remark 3.10 Let {Q(1), Q(2), · · · , Q(t)} ⊂ ϕ−1(E(k)) be a complete set of represen-

tatives of {Q ∈ ϕ−1(E(k))/E1(k) ; E2{Q} ̸= ∅}. Then, for each l, there exists an elliptic

curve C(l) defined over k and an isomorphism θ(l) : C(l) → E2 defined over k(Q(l)) such

that E2{Q(l)} = θ(l)(C(l)(k)), as we have mentioned in Remark 3.7. Hence we can rewrite

the above expression as

π−1(S(k)) =
t⨿

l=1

(
Q(l) + E1(k)

)
× θ(l)(C(l)(k)).

In particular, if we can calculate effectively the set C(k) of k–rational points on any elliptic

curve C defined over k, then we can also calculate effectively the set S(k) of k–rational

points on a hyperelliptic surface S.

Remark 3.11 Let E be an elliptic curve defined over k. Then the quotient variety

of E by {±idE} is isomorphic to P1. Since P1 has much more rational points than elliptic

curves, by comparing the number of rational points on P1 and the number of rational points

on a finite disjoint union of elliptic curves, we observe that in this case, an infinite number

of twists Eσ of E over quadratic extensions of k are needed to express ϖ−1(P1(k)) =⨿
σ E

σ(k), where ϖ : E → P1 is the natural morphism.

On the other hand, we need only a finite number of twists E1×C(1), E1×C(2), · · · , E1×
C(t) of A = E1 × E2 to express π−1(S(k)) in our case.
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4 Number of Rational Points of Bounded Heights

Now we state the main result of this paper, which is a more precise form of Theorem

A in §1.

Theorem 4.1 (Main Theorem) Let k be an algebraic number field of finite degree

and let S be a hyperelliptic surface defined over k. We assume that the conditions (C1)–

(C4) in §3 are satisfied. Then, for any ample invertible sheaf L on the k–variety S, we

have

NL(S(k);M) = cM r/2 +O(M (r−1)/2) as M → ∞,

where

r = rank E1(k) + max
Q∈ϕ−1(E(k))/E1(k)

E2{Q}̸=∅

rank C{Q}

is a non-negative integer, and c is a positive constant which depends on the algebraic

equivalence class of L.

Remark 4.2 Using the notation of Remark 3.10, we can express the integer r as

r = rank E1(k) + max
1≤l≤t

rank C(l)(k).

Hence the integer r is determined by the structure of the groups of k–rational points on

elliptic curves E1, C
(1), C(2), · · · , C(t). Therefore, if we assume the Birch and Swinnerton-

Dyer conjecture on elliptic curves, then r can be described in terms of the behavior at

s = 1 of the L–functions of these elliptic curves.

To obtain Theorem 4.1 from Theorem 3.9, we use the following results (Lemmas 4.3

and 4.4) on height functions.

Lemma 4.3 If f : V → W is a morphism of nonsingular projective varieties, and if

L is an invertible sheaf on W , then we have

hf∗L = hL ◦ f +O(1)

as functions on V (Q̄), where hL (resp. hf∗L) denotes the height function on W (resp. V )

associated to L (resp. f ∗L). (We note that all varieties, morphisms, sheaves are assumed

to be defined over Q̄.)

Proof See [11, Theorem 3.3, (b)]. q.e.d.
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Lemma 4.4 Let K be an algebraic number field of finite degree and let A be an abelian

variety defined over K. Let L be an invertible sheaf on A/K and let hL be the height

function associated to L. Then we have :

(i) There exists a unique quadratic form qL : A(Q̄) → R and a unique linear form

lL : A(Q̄) → R such that

hL = qL + lL +O(1)

as functions on A(Q̄). (The function qL + lL : A(Q̄) → R is called the Néron-Tate height

or the canonical height associated to L.)
(ii) Suppose that L is ample. Then qL vanishes on A(Q̄)tor, and the extension of qL

to the R–vector space A(K)R = A(K)⊗ZR is a positive definite quadratic form. Further,

if M is an invertible sheaf on A which is algebraically equivalent to L, then qM and qL

coincide.

(iii) Suppose that L is ample. Then, for any Q ∈ A(K) and any infinite subgroup B
of A(K), we have the following asymptotic formula :

#{P ∈ Q+ B ; hL(P ) ≤ M} = cM r/2 +O(M (r−1)/2) as M → ∞,

where

r = rank B and c = #Btor ×
Vol({x ∈ BR ; qL(x) ≤ 1})

Vol(BR/Bfree)
.

Proof (i) See [5, Chapter 4, Theorem 3.1].

(ii) Suppose that L is ample, Then we have

#{P ∈ A(K) ; hL(P ) ≤ M} < ∞

for any constant M (cf., e.g., [11, Corollary 3.4]). Since qL is quadratic and since lL is

linear, we obtain

#{P ∈ A(K) ; qL(P ) ≤ M} < ∞

for any constantM . Since qL is a quadratic form, it is easy and well-known that qL vanishes

on A(Q̄)tor. Hence qL is a positive definite quadratic form on A(K)R (cf. [5, Chapter 5,

§7]).
Suppose that M is algebraically equivalent to L. Then we have

hM(P )

hL(P )
→ 1 as hM(P ) → ∞ (P ∈ A(K))

(cf. [5, Chapter 4, Proposition 5.3]). Since non-degenerate quadratic forms grow faster

than linear forms, it follows that

qM(P )

qL(P )
→ 1 as qM(P ) → ∞ (P ∈ A(K)).
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Since qM and qL are quadratic forms, the equality qM = qL holds as functions on A(K).

(iii) It follows from (ii) that lL = O(q
1/2
L ) holds as functions on A(K). By using this

estimate, one can obtain the asymptotic formula as in [5, Chapter 5, Theorem 7.5]. q.e.d.

Proof of Theorem 4.1 Since the natural morphism π : A → S is finite and surjective,

the inverse image π∗L is an ample invertible sheaf on the abelian variety A. It follows from

Lemma 4.3 that

hπ∗L = hL ◦ π +O(1)

holds as functions on A(Q̄). On the one hand, we have

NL(S(k);M) =
#{P ∈ π−1(S(k)) ; hL(π(P )) ≤ M}

#G
,

where G is the subgroup of Aut(E1)×Aut(E2) defined in Theorem 2.1. Hence there exists

a positive constant M0 such that

Nπ∗L(π
−1(S(k));M −M0)

#G
≤ NL(S(k);M) ≤ Nπ∗L(π

−1(S(k));M +M0)

#G
,

where

Nπ∗L(π
−1(S(k));M ±M0) = #{P ∈ π−1(S(k)) ; hπ∗L(P ) ≤ M ±M0}.

By Theorem 3.9, π−1(S(k)) can be expressed as

π−1(S(k)) =
⨿

Q∈ϕ−1(E(k))/E1(k)
E2{Q}̸=∅

(
(Q,R) + E1(k)× C{Q}

)
.

Hence we have

Nπ∗L(π
−1(S(k));M ±M0)

=
∑

Q∈ϕ−1(E(k))/E1(k)
E2{Q}̸=∅

#{P ∈ (Q,R) + E1(k)× C{Q} ; hπ∗L(P ) ≤ M ±M0}.

Now, if E2{Q} is not empty, then it follows from Lemma 4.4, (iii) that

#{P ∈ (Q,R) + E1(k)× C{Q} ; hπ∗L(P ) ≤ M ±M0}
= c(Q)(M ±M0)

r(Q)/2 +O((M ±M0)
(r(Q)−1)/2)

= c(Q)M r(Q)/2 +O(M (r(Q)−1)/2)

as M → ∞, where

r(Q) = rank (E1(k)× C{Q}) = rank E1(k) + rank C{Q}
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and

c(Q) = #(E1(k)× C{Q})tor ×
Vol({x ∈ (E1(k)× C{Q})R ; qπ∗L(x) ≤ 1})
Vol((E1(k)× C{Q})R/(E1(k)× C{Q})free)

(if r(Q) = 0, we put c(Q) = #(E1(k) × C{Q})). We denote by c′ the sum of the c(Q)

(Q ∈ ϕ−1(E(k))/E1(k), E2{Q} ̸= ∅) which satisfy

rank C{Q} = max
Q′∈ϕ−1(E(k))/E1(k)

E2{Q′}≠∅

rank C{Q′}.

Then c′ is a positive number, and we have

Nπ∗L(π
−1(S(k));M ±M0) =

∑
Q∈ϕ−1(E(k))/E1(k)

E2{Q}̸=∅

(
c(Q)M r(Q)/2 +O(M (r(Q)−1)/2)

)

= c′M r/2 +O(M (r−1)/2)

as M → ∞, where

r = max
Q∈ϕ−1(E(k))/E1(k)

E2{Q}̸=∅

r(Q) = rank E1(k) + max
Q∈ϕ−1(E(k))/E1(k)

E2{Q}̸=∅

rank C{Q}.

By putting c = c′/#G, we obtain the desired asymptotic formula. q.e.d.

Though k does not satisfy the conditions (C1)–(C4) in §3 in general, there exists a

finite extension k′ of k which satisfies these conditions. Then we have

{P ∈ S(k) ; hL(P ) ≤ M} ⊂ {P ∈ S(k′) ; hL(P ) ≤ M}.

Since the integer r in Theorem 4.1 is independent of the choice of L, we obtain the following

result.

Corollary 4.5 Let k be an algebraic number field of finite degree and let S be a hy-

perelliptic surface defined over k. Then there exists a non-negative integer r such that

NL(S(k);M) = O(M r/2) as M → ∞

for any ample invertible sheaf L on the k–variety S.

Let k be an algebraic number field of finite degree, V a nonsingular projective variety

defined over k, and L an ample invertible sheaf on V/k. Let HL = exp ◦hL be the

(absolute) exponential height function. Then the Dirichlet series

ZL(V (k); s) =
∑

P∈V (k)

HL(P )−s (s ∈ C)

was studied in [1] and [4]. By using Corollary 4.5, we obtain the following:
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Corollary 4.6 Let S be a hyperelliptic surface defined over an algebraic number field

k of finite degree, and let L be an ample invertible sheaf on S/k. Then, for any δ > 0, the

Dirichlet series

ZL(S(k); s) =
∑

P∈S(k)
HL(P )−s (s ∈ C)

converges absolutely and uniformly for Re(s) ≥ δ.

Remark 4.7 Since the canonical bundle of S is torsion, the algebraic invariant α(L)
of Batyrev-Manin [1] is zero. Since this corollary implies that the arithmetic invariant

βS(L) is zero, Conjecture A of [1] holds in this case.
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